Principal

L'ischémie

La structure et le principe du coeur

Le cœur est un organe musculaire chez les humains et les animaux qui pompe le sang dans les vaisseaux sanguins.

Fonctions du coeur - pourquoi avons-nous besoin d'un coeur?

Notre sang fournit au corps entier de l'oxygène et des nutriments. En outre, il a également une fonction de nettoyage, aidant à éliminer les déchets métaboliques.

La fonction du cœur est de pomper le sang dans les vaisseaux sanguins.

Combien de sang le cœur pompe-t-il?

Le cœur humain pompe environ 7 000 à 10 000 litres de sang en une journée. Cela représente environ 3 millions de litres par an. Il s'avère que jusqu'à 200 millions de litres dans une vie!

La quantité de sang pompé en une minute dépend de la charge physique et émotionnelle actuelle - plus la charge est importante, plus le corps a besoin de sang. Ainsi, le cœur peut passer de 5 à 30 litres en une minute.

Le système circulatoire comprend environ 65 000 vaisseaux, leur longueur totale est d'environ 100 000 kilomètres! Oui, nous ne sommes pas scellés.

Système circulatoire

Système circulatoire (animation)

Le système cardiovasculaire humain est constitué de deux cercles de circulation sanguine. À chaque battement de coeur, le sang se déplace dans les deux cercles en même temps.

Système circulatoire

  1. Le sang désoxygéné de la veine cave supérieure et inférieure pénètre dans l'oreillette droite puis dans le ventricule droit.
  2. Du ventricule droit, le sang est poussé dans le tronc pulmonaire. Les artères pulmonaires aspirent le sang directement dans les poumons (avant les capillaires pulmonaires), où il reçoit de l'oxygène et libère du dioxyde de carbone.
  3. Ayant reçu suffisamment d'oxygène, le sang retourne dans l'oreillette gauche du cœur par les veines pulmonaires.

Grand cercle de la circulation sanguine

  1. De l'oreillette gauche, le sang se déplace vers le ventricule gauche, d'où il est ensuite pompé par l'aorte dans la circulation systémique.
  2. Après avoir emprunté un chemin difficile, le sang dans les veines creuses arrive à nouveau dans l'oreillette droite du cœur.

Normalement, la quantité de sang éjectée des ventricules cardiaques à chaque contraction est la même. Ainsi, un volume égal de sang circule simultanément dans les grands et les petits cercles.

Quelle est la différence entre les veines et les artères?

  • Les veines sont conçues pour transporter le sang vers le cœur et la tâche des artères est de fournir du sang dans la direction opposée.
  • Dans les veines, la pression artérielle est inférieure à celle des artères. Conformément à cela, les artères des murs se distinguent par une plus grande élasticité et densité.
  • Les artères saturent le tissu "frais" et les veines prélèvent le sang "perdu".
  • En cas de lésion vasculaire, les saignements artériels ou veineux peuvent être distingués par leur intensité et la couleur du sang. Artérielle - «fontaine» puissante, pulsante et battante, la couleur du sang est brillante. Veineux - saignement d'intensité constante (flux continu), la couleur du sang est sombre.

La structure anatomique du coeur

Le poids du cœur d’une personne n’est que d’environ 300 grammes (en moyenne 250 g pour les femmes et 330 g pour les hommes). Malgré son poids relativement faible, il s’agit sans aucun doute du principal muscle du corps humain et de la base de son activité vitale. La taille du coeur est en effet à peu près égale au poing d'une personne. Les athlètes peuvent avoir un cœur une fois et demie plus grand que celui d'une personne ordinaire.

Le coeur est situé au milieu de la poitrine au niveau de 5 à 8 vertèbres.

Normalement, la partie inférieure du cœur se situe principalement dans la moitié gauche de la poitrine. Il existe une variante de la pathologie congénitale dans laquelle tous les organes sont en miroir. C'est ce qu'on appelle la transposition des organes internes. Le poumon, à côté duquel se situe le cœur (normalement le gauche), a une taille inférieure à celle de l'autre moitié.

La surface arrière du cœur est située près de la colonne vertébrale et le devant est protégé de manière sûre par le sternum et les côtes.

Le cœur humain est constitué de quatre cavités indépendantes (chambres) divisées par des cloisons:

  • deux oreillettes supérieure gauche et droite;
  • et deux ventricules inférieur gauche et droit.

Le côté droit du cœur comprend l'oreillette droite et le ventricule. La moitié gauche du cœur est représentée par le ventricule gauche et l'oreillette, respectivement.

Les veines creuses inférieure et supérieure pénètrent dans l'oreillette droite et les veines pulmonaires dans l'oreillette gauche. Les artères pulmonaires (également appelées le tronc pulmonaire) sortent du ventricule droit. Du ventricule gauche, l'aorte ascendante s'élève.

Coeur mur structure

Coeur mur structure

Le cœur est protégé contre l'étirement excessif et d'autres organes, ce qui s'appelle le péricarde ou sac péricardique (une sorte d'enveloppe dans laquelle l'organe est enfermé). Il comporte deux couches: le tissu conjonctif solide extérieur dense, appelé membrane fibreuse du péricarde et le tissu interne (séreux péricardique).

Viennent ensuite une couche musculaire épaisse - myocarde et endocarde (membrane interne mince du tissu conjonctif du cœur).

Ainsi, le cœur lui-même est constitué de trois couches: l'épicarde, le myocarde, l'endocarde. C'est la contraction du myocarde qui pompe le sang dans les vaisseaux du corps.

Les parois du ventricule gauche sont environ trois fois plus grandes que celles du droit! Ce fait s’explique par le fait que la fonction du ventricule gauche consiste à pousser du sang dans la circulation systémique, où la réaction et la pression sont beaucoup plus élevées que dans le petit.

Valves cardiaques

Valve cardiaque

Des valves cardiaques spéciales vous permettent de maintenir en permanence le débit sanguin dans la bonne direction (unidirectionnelle). Les valves s’ouvrent et se ferment une à une, soit en laissant entrer le sang, soit en le bloquant. Fait intéressant, les quatre vannes sont situées le long du même plan.

Une valve tricuspide est située entre l'oreillette droite et le ventricule droit. Il contient trois ceintures spéciales, capables pendant la contraction du ventricule droit de se protéger du courant inverse (régurgitation) du sang dans l'oreillette.

De même, la valve mitrale fonctionne, mais elle est située dans la partie gauche du cœur et présente une structure bicuspide.

La valve aortique empêche le sang de sortir de l'aorte dans le ventricule gauche. Il est intéressant de noter que, lorsque le ventricule gauche se contracte, la valve aortique s’ouvre en raison de la pression artérielle sur le ventricule. Elle se déplace alors dans l’aorte. Ensuite, pendant la diastole (la période de relaxation du cœur), l’inversion du sang de l’artère contribue à la fermeture des valves.

Normalement, la valve aortique a trois feuillets. L'anomalie congénitale la plus fréquente du cœur est la valve aortique bicuspide. Cette pathologie est présente chez 2% de la population humaine.

Une valve pulmonaire (pulmonaire) au moment de la contraction du ventricule droit permet au sang de circuler dans le tronc pulmonaire et, lors de la diastole, de ne pas le faire circuler dans la direction opposée. Se compose également de trois ailes.

Vaisseaux cardiaques et circulation coronaire

Le cœur humain a besoin de nourriture et d'oxygène, ainsi que de tout autre organe. Les vaisseaux fournissant du sang au cœur sont appelés coronaires ou coronaires. Ces vaisseaux partent de la base de l'aorte.

Les artères coronaires alimentent le cœur en sang, les veines coronaires éliminent le sang désoxygéné. Les artères qui se trouvent à la surface du cœur sont appelées épicardies. On appelle sous artères coronaires les artères coronaires cachées au fond du myocarde.

La majeure partie du sang sortant du myocarde passe par trois veines cardiaques: grande, moyenne et petite. Formant le sinus coronaire, ils tombent dans l'oreillette droite. Les veines antérieure et mineure du cœur transportent le sang directement dans l'oreillette droite.

Les artères coronaires sont divisées en deux types - droite et gauche. Ce dernier comprend les artères interventriculaires et enveloppantes antérieures. Une grande veine cardiaque se branche dans les veines postérieure, moyenne et petite du cœur.

Même les personnes en parfaite santé ont leurs propres caractéristiques uniques dans la circulation coronarienne. En réalité, les navires peuvent avoir l’air différent et être placés différemment de ceux représentés sur la photo.

Comment le coeur se développe-t-il?

Pour la formation de tous les systèmes du corps, le fœtus a besoin de sa propre circulation sanguine. Par conséquent, le cœur est le premier organe fonctionnel apparaissant dans le corps d'un embryon humain. Il se produit approximativement au cours de la troisième semaine du développement fœtal.

L'embryon au tout début n'est qu'un groupe de cellules. Mais avec le cours de la grossesse, elles deviennent de plus en plus, et maintenant elles sont connectées, se formant sous des formes programmées. Tout d'abord, deux tubes sont formés, qui se fondent ensuite en un. Ce tube est plié et une descente rapide forme une boucle - la boucle cardiaque principale. Cette boucle est en avance sur toutes les cellules restantes en croissance et est rapidement étendue, puis se trouve à droite (peut-être à gauche, ce qui signifie que le cœur sera placé comme un miroir) sous la forme d'un anneau.

Ainsi, habituellement, le 22e jour après la conception, le cœur se contracte pour la première fois et, au 26e jour, le fœtus a sa propre circulation sanguine. Le développement ultérieur implique l'apparition de septa, la formation de valves et le remodelage des cavités cardiaques. Les cloisons se forment à la cinquième semaine et les valves cardiaques à la neuvième.

Fait intéressant, le cœur du fœtus commence à battre avec la fréquence d'un adulte ordinaire - 75 à 80 coupes par minute. Puis, au début de la septième semaine, le pouls est d’environ 165-185 battements par minute, ce qui correspond à la valeur maximale, suivie d’un ralentissement. Le pouls du nouveau-né se situe entre 120 et 170 coupes par minute.

Physiologie - le principe du coeur humain

Considérons en détail les principes et les schémas du cœur.

Cycle cardiaque

Quand un adulte est calme, son cœur se contracte entre 70 et 80 cycles par minute. Un battement du pouls équivaut à un cycle cardiaque. Avec une telle vitesse de réduction, un cycle prend environ 0,8 seconde. La contraction auriculaire est de 0,1 seconde, les ventricules de 0,3 seconde et la période de relaxation de 0,4 seconde.

La fréquence du cycle est définie par le pilote de fréquence cardiaque (une partie du muscle cardiaque dans laquelle surviennent des impulsions qui régulent la fréquence cardiaque).

Les concepts suivants sont distingués:

  • Systole (contraction) - presque toujours, ce concept implique une contraction des ventricules cardiaques, ce qui provoque une secousse de sang le long du canal artériel et maximise la pression dans les artères.
  • Diastole (pause) - la période pendant laquelle le muscle cardiaque est en phase de relaxation. À ce stade, les cavités cardiaques sont remplies de sang et la pression dans les artères diminue.

Donc, mesurer la pression artérielle enregistre toujours deux indicateurs. Par exemple, prenons les nombres 110/70, que veulent-ils dire?

  • 110 correspond au chiffre supérieur (pression systolique), c’est-à-dire à la pression artérielle dans les artères au moment du rythme cardiaque.
  • 70 est le chiffre le plus bas (pression diastolique), c’est-à-dire la pression sanguine dans les artères au moment de la relaxation du cœur.

Une description simple du cycle cardiaque:

Cycle cardiaque (animation)

Au moment de la relaxation du cœur, les oreillettes et les ventricules (à travers les valvules ouvertes) sont remplis de sang.

  • Se produit la systole (contraction) des oreillettes, ce qui vous permet de déplacer complètement le sang des oreillettes vers les ventricules. La contraction auriculaire commence au site d'entrée des veines, ce qui garantit la compression primaire de la bouche et l'impossibilité pour le sang de refluer dans les veines.
  • Les oreillettes se relâchent et les valves séparant les oreillettes des ventricules (tricuspide et mitrale) se ferment. Apparaît la systole ventriculaire.
  • La systole ventriculaire pousse le sang dans l'aorte par le ventricule gauche et dans l'artère pulmonaire par le ventricule droit.
  • Vient ensuite une pause (diastole). Le cycle est répété.
  • Conditionnellement, pour un battement du pouls, il y a deux battements de coeur (deux systoles) - d'abord, les oreillettes sont réduites, puis les ventricules. En plus de la systole ventriculaire, il existe une systole auriculaire. La contraction des oreillettes n'a pas de valeur dans le travail mesuré du cœur, car dans ce cas, le temps de relaxation (diastole) est suffisant pour remplir les ventricules de sang. Cependant, une fois que le cœur commence à battre plus souvent, la systole auriculaire devient cruciale - sans cela, les ventricules n'auraient tout simplement pas le temps de se remplir de sang.

    La circulation sanguine dans les artères ne s'effectue que lors de la contraction des ventricules, ces contractions s'appellent des pulsations.

    Muscle cardiaque

    La particularité du muscle cardiaque réside dans sa capacité à effectuer des contractions automatiques rythmiques, en alternance avec la relaxation, qui se déroule de manière continue tout au long de la vie. Le myocarde (couche musculaire moyenne du cœur) des oreillettes et des ventricules est divisé, ce qui leur permet de se contracter séparément les uns des autres.

    Cardiomyocytes - cellules musculaires du coeur avec une structure spéciale, permettant spécialement de transmettre une onde d'excitation. Il existe donc deux types de cardiomyocytes:

    • les travailleurs ordinaires (99% du nombre total de cellules du muscle cardiaque) sont conçus pour recevoir un signal d'un stimulateur cardiaque au moyen de cardiomyocytes conducteurs.
    • Des cardiomyocytes spéciaux conducteurs (1% du nombre total de cellules du muscle cardiaque) forment le système de conduction. Dans leur fonction, ils ressemblent aux neurones.

    Comme le muscle squelettique, le muscle cardiaque peut augmenter de volume et accroître l'efficacité de son travail. Le volume cardiaque des athlètes d'endurance peut être de 40% supérieur à celui d'une personne ordinaire! C'est une hypertrophie utile du cœur lorsqu'il s'étire et est capable de pomper plus de sang en un seul coup. Il existe une autre hypertrophie appelée "cœur sportif" ou "cœur de taureau".

    L’essentiel, c’est que certains athlètes augmentent la masse du muscle lui-même, et non sa capacité à s’étirer et à faire passer de grandes quantités de sang. La raison en est des programmes de formation compilés irresponsables. Absolument, tout exercice physique, en particulier la force, devrait être construit sur la base du cardio. Sinon, un effort physique excessif sur un cœur non préparé provoque une dystrophie du myocarde, entraînant une mort prématurée.

    Système de conduction cardiaque

    Le système conducteur du cœur est un groupe de formations spéciales constituées de fibres musculaires non standard (cardiomyocytes conducteurs), qui servent de mécanisme pour assurer le travail harmonieux des services du cœur.

    Chemin d'impulsion

    Ce système assure l'automatisme du cœur - l'excitation des impulsions nées dans les cardiomyocytes sans stimulus externe. Dans un cœur en bonne santé, la principale source d’impulsions est le nœud sinusal (nœud sinusal). Il dirige et chevauche les impulsions de tous les autres stimulateurs cardiaques. Mais si une maladie quelconque entraîne le syndrome de faiblesse du nœud sinusal, les autres parties du cœur prennent en charge sa fonction. Ainsi, le nœud auriculo-ventriculaire (centre automatique du second ordre) et le faisceau de His (AC du troisième ordre) peuvent être activés lorsque le nœud sinusal est faible. Il existe des cas où les nœuds secondaires améliorent leur propre automatisme et pendant le fonctionnement normal du nœud sinusal.

    Le nœud sinusal est situé dans la paroi arrière supérieure de l'oreillette droite, à proximité immédiate de l'embouchure de la veine cave supérieure. Ce nœud initie des impulsions avec une fréquence d’environ 80-100 fois par minute.

    Le noeud auriculo-ventriculaire (AV) est situé dans la partie inférieure de l'oreillette droite du septum auriculo-ventriculaire. Cette partition empêche la propagation des impulsions directement dans les ventricules, en contournant le noeud AV. Si le nœud sinusal est affaibli, l'atrioventriculaire reprend sa fonction et commence à transmettre des impulsions au muscle cardiaque à une fréquence de 40 à 60 contractions par minute.

    Ensuite, le noeud auriculo-ventriculaire passe dans le faisceau de His (le faisceau auriculo-ventriculaire est divisé en deux branches). La jambe droite se précipite sur le ventricule droit. La jambe gauche est divisée en deux autres moitiés.

    La situation avec la jambe gauche du faisceau de Son n'est pas entièrement comprise. On pense que la jambe gauche de la branche antérieure des fibres se précipite sur la paroi antérieure et latérale du ventricule gauche et que la branche postérieure des fibres constitue la paroi arrière du ventricule gauche et les parties inférieures de la paroi latérale.

    En cas de faiblesse du nœud sinusal et de blocage de l'atrioventriculaire, le faisceau de His est capable de créer des impulsions à une vitesse de 30 à 40 par minute.

    Le système de conduction s’approfondit puis se ramifie en branches plus petites pour se transformer en fibres de Purkinje qui pénètrent dans le myocarde et servent de mécanisme de transmission pour la contraction des muscles des ventricules. Les fibres de Purkinje sont capables d'initier des impulsions à une fréquence de 15 à 20 par minute.

    Les athlètes exceptionnellement bien entraînés peuvent avoir une fréquence cardiaque normale au repos jusqu'au chiffre le plus bas enregistré - seulement 28 battements de coeur par minute! Cependant, pour une personne moyenne, même si son mode de vie est très actif, une fréquence cardiaque inférieure à 50 battements par minute peut être un signe de bradycardie. Si votre pouls est si faible, vous devriez être examiné par un cardiologue.

    Rythme cardiaque

    La fréquence cardiaque du nouveau-né peut être d'environ 120 battements par minute. En grandissant, le pouls d'une personne ordinaire se stabilise entre 60 et 100 battements par minute. Les athlètes bien entraînés (nous parlons de personnes ayant des systèmes cardiovasculaire et respiratoire bien entraînés) ont un pouls de 40 à 100 battements par minute.

    Le rythme du coeur est contrôlé par le système nerveux - le sympathique renforce les contractions et le parasympathique s'affaiblit.

    L'activité cardiaque dépend, dans une certaine mesure, de la teneur en ions calcium et potassium dans le sang. D'autres substances biologiquement actives contribuent également à la régulation du rythme cardiaque. Notre cœur peut commencer à battre plus souvent sous l'influence d'endorphines et d'hormones sécrétées lors de l'écoute de votre musique préférée ou de votre baiser.

    De plus, le système endocrinien peut avoir un effet significatif sur le rythme cardiaque, ainsi que sur la fréquence des contractions et leur force. Par exemple, la libération d'adrénaline par les glandes surrénales entraîne une augmentation du rythme cardiaque. L'hormone opposée est l'acétylcholine.

    Tons de coeur

    L'une des méthodes les plus simples pour diagnostiquer une maladie cardiaque consiste à écouter la poitrine avec un stéthophonendoscope (auscultation).

    Dans un cœur en bonne santé, lors d'une auscultation standard, on n'entend que deux sons cardiaques, appelés S1 et S2:

    • S1 - le son est entendu lorsque les valves atrioventriculaire (mitrale et tricuspide) sont fermées pendant la systole (contraction) des ventricules.
    • S2 - le son émis lors de la fermeture des valves semi-lunaires (aortiques et pulmonaires) pendant la diastole (relaxation) des ventricules.

    Chaque son est constitué de deux composants, mais pour l’oreille humaine, ils se confondent en raison du temps très court qui les sépare. Si, dans des conditions normales d'auscultation, des sons supplémentaires deviennent audibles, cela peut indiquer une maladie du système cardiovasculaire.

    Parfois, des bruits anormaux supplémentaires peuvent être entendus dans le cœur, appelés sons cardiaques. En règle générale, la présence de bruit indique toute pathologie du coeur. Par exemple, le bruit peut faire revenir le sang dans le sens opposé (régurgitation) en raison d'un fonctionnement incorrect ou d'une lésion d'une valve. Cependant, le bruit n'est pas toujours un symptôme de la maladie. Clarifier les raisons de l'apparition de bruits supplémentaires dans le cœur consiste à effectuer une échocardiographie (échographie du cœur).

    Maladie cardiaque

    Sans surprise, le nombre de maladies cardiovasculaires est en augmentation dans le monde. Le cœur est un organe complexe qui repose réellement (si on peut l'appeler repos) seulement dans les intervalles entre les battements de coeur. Tout mécanisme complexe et fonctionnant constamment requiert en soi une attitude très prudente et une prévention constante.

    Imaginez juste quel fardeau monstrueux pèse sur le cœur, étant donné notre mode de vie et notre nourriture abondante et de mauvaise qualité. Il est intéressant de noter que le taux de mortalité par maladies cardiovasculaires est assez élevé dans les pays à revenu élevé.

    Les énormes quantités de nourriture consommées par la population des pays riches et la poursuite incessante de l'argent, ainsi que le stress qui y est associé, détruisent notre cœur. L'hypodynamie est une autre raison de la propagation des maladies cardiovasculaires: une activité physique catastrophiquement basse qui détruit tout le corps. Ou, au contraire, la passion illettrée pour les exercices physiques lourds, qui se produisent souvent dans le contexte d’une maladie cardiaque, dont la présence n’est même pas suspectée et qui réussit à mourir correctement au cours des exercices "de santé".

    Mode de vie et santé cardiaque

    Les principaux facteurs qui augmentent le risque de développer des maladies cardiovasculaires sont:

    • L'obésité.
    • Hypertension artérielle.
    • Taux de cholestérol élevé.
    • Hypodynamie ou exercice excessif.
    • Nourriture abondante et de mauvaise qualité.
    • État émotionnel déprimé et stress.

    Faites de la lecture de cet excellent article un tournant dans votre vie: abandonnez les mauvaises habitudes et changez votre mode de vie.

    Structure du coeur

    Le cœur est un organe musculaire creux à quatre chambres. La taille du coeur correspond approximativement à la taille du poing. La masse du cœur est en moyenne de 300 g, l'enveloppe externe du cœur est le péricarde. Il se compose de deux feuilles: l’une forme la poche péricardique, l’autre - l’enveloppe extérieure du cœur - l’épicarde. Entre le péricarde et l'épicarde se trouve une cavité remplie de liquide pour réduire les frottements pendant la contraction du cœur. L'enveloppe moyenne du coeur est le myocarde. Il s'agit d'un tissu musculaire strié d'une structure particulière (tissu musculaire cardiaque). Les fibres musculaires adjacentes sont interconnectées par des ponts cytoplasmiques. Les connexions intercellulaires n'interfèrent pas avec l'excitation, de sorte que le muscle cardiaque puisse se contracter rapidement. Dans les cellules nerveuses et le muscle squelettique, chaque cellule est excitée de manière isolée. La paroi interne du cœur est l'endocarde. Il tapisse la cavité du coeur et forme les valves - valves.

    Le cœur humain est composé de quatre chambres: 2 oreillettes (gauche et droite) et 2 ventricules (gauche et droite). La paroi musculaire des ventricules (en particulier celle de gauche) est plus épaisse que la paroi des oreillettes. Le sang veineux coule dans la moitié droite du coeur, dans l'artère gauche.

    Il y a des valves pliantes entre les oreillettes et les ventricules (entre la gauche - bicuspide, entre la droite et la tricuspide). Il existe des valves semi-lunaires entre le ventricule gauche et l'aorte et entre le ventricule droit et l'artère pulmonaire (elles se composent de trois feuilles qui ressemblent à des poches). Les valves du cœur assurent le mouvement du sang dans une seule direction: des oreillettes aux ventricules et des ventricules aux artères.

    Travail du coeur

    Le cœur se contracte de manière rythmique: les contractions alternent avec la relaxation. La contraction du coeur s'appelle la systole et la relaxation s'appelle la diastole. Le cycle cardiaque est une période couvrant une contraction et une relaxation. Il dure 0,8 s et comprend trois phases: Phase I - la contraction (systole) des oreillettes - dure 0,1 s; Phase II - contraction (systole) des ventricules - dure 0,3 s; La phase III - une pause générale - et les oreillettes et les ventricules sont relâchés - dure 0,4 s. Au repos, la fréquence cardiaque des adultes est de 60 à 80 fois par minute. Le myocarde est formé par un tissage musculaire spécial strié se contractant involontairement. L'automatisation est caractéristique du muscle cardiaque - la capacité de se contracter sous l'action des impulsions qui se produisent dans le cœur même. Cela est dû aux cellules spéciales qui se trouvent dans le muscle cardiaque, dans lesquelles les excitations apparaissent de manière rythmée.

    Fig. 1. Schéma de la structure du coeur (section verticale):

    1 - paroi musculaire du ventricule droit, 2 - muscles papillaires, à partir desquels des filaments tendineux (3) fixés à la valve (4) située entre l'oreillette et le ventricule, départ, 5 - oreillette droite, 6 - ouverture de la veine cave inférieure; 7 - veine cave supérieure, 8 - septum entre les oreillettes, 9 - ouvertures de quatre veines pulmonaires; 10 - l'oreillette droite, 11 - la paroi musculaire du ventricule gauche, 12 - le septum entre les ventricules

    La contraction automatique du coeur continue avec l'isolement du corps. En même temps, l'excitation qui arrive en un point passe au muscle entier et toutes ses fibres se contractent simultanément.

    Dans le travail du cœur, il y a trois phases. La première est la contraction des oreillettes, la seconde est la contraction des ventricules - systole, la troisième - relaxation simultanée des oreillettes et des ventricules - diastole, ou une pause dans la dernière phase, les deux oreillettes sont remplies de sang des veines et passent librement dans les ventricules. Le sang pénétrant dans les ventricules pousse les valves auriculaires par le bas et elles se ferment. Avec la réduction des deux ventricules dans leurs cavités, la pression artérielle augmente et il pénètre dans l'aorte et l'artère pulmonaire (dans les grands et les petits cercles de la circulation sanguine). Après la contraction des ventricules, leur relaxation commence. Une pause est suivie d'une contraction des oreillettes, puis des ventricules, etc.

    La période d'une contraction auriculaire à une autre s'appelle le cycle cardiaque. Chaque cycle dure 0,8 s. À partir de ce moment, la contraction auriculaire est de 0,1 s, la contraction ventriculaire est de 0,3 s et la pause cardiaque totale dure 0,4 s. Si la fréquence cardiaque augmente, la durée de chaque cycle diminue. Ceci est principalement dû au raccourcissement de la pause totale du coeur. À chaque contraction, les deux ventricules émettent la même quantité de sang dans l'aorte et l'artère pulmonaire (environ 70 ml en moyenne), appelée volume systolique du sang.

    Le travail du cœur est régulé par le système nerveux en fonction des effets de l'environnement interne et externe: concentration d'ions potassium et calcium, hormone thyroïdienne, état de repos ou de travail physique, stress émotionnel. Deux types de fibres nerveuses centrifuges appartenant au système nerveux autonome correspondent au cœur en tant que corps actif. Une paire de nerfs (fibres sympathiques) présentant une irritation renforce et accélère les contractions cardiaques. Lorsqu'une autre paire de nerfs (une branche du nerf vague) est stimulée, les impulsions vers le cœur affaiblissent son activité.

    Le travail du cœur est lié à l'activité d'autres organes. Si l'excitation est transmise au système nerveux central par les organes actifs, elle est ensuite transmise aux nerfs par le système nerveux central, ce qui renforce la fonction cardiaque. Donc, par réflexe, on établit la correspondance entre l'activité de divers organes et le travail du cœur. Le cœur se contracte 60 à 80 fois par minute.

    Les parois des artères et des veines sont constituées de trois couches: la couche interne (couche mince de cellules épithéliales), la couche intermédiaire (couche épaisse de fibres élastiques et de cellules du tissu musculaire lisse) et la couche externe (tissu conjonctif lâche et fibres nerveuses). Les capillaires sont constitués d'une seule couche de cellules épithéliales.

    Les artères sont des vaisseaux dans lesquels le sang circule du cœur vers les organes et les tissus. Les murs sont constitués de trois couches. On distingue les types d’artères suivants: artères de type élastique (gros vaisseaux proches du cœur), artères de type musculaire (artères moyennes et petites qui résistent au flux sanguin et régulent ainsi le flux sanguin vers l’organe) et artérioles (derniers ramifications des artères passant dans les capillaires).

    Les capillaires sont des vaisseaux minces dans lesquels des fluides, des nutriments et des gaz sont échangés entre le sang et les tissus. Leur paroi est constituée d'une seule couche de cellules épithéliales.

    Les veines sont les vaisseaux par lesquels le sang circule des organes vers le coeur. Leurs parois (ainsi que sur les artères) se composent de trois couches, mais elles sont plus fines et plus pauvres en fibres élastiques. Par conséquent, les veines sont moins élastiques. La plupart des veines sont équipées de valves qui empêchent le reflux de sang.

    La structure du coeur humain et les traits de son travail

    Le cœur humain a quatre chambres: deux ventricules et deux oreillettes. Le sang artériel coule à gauche, le sang veineux à droite. La fonction principale - le transport, le muscle cardiaque fonctionne comme une pompe, pompant le sang vers les tissus périphériques, en leur fournissant de l'oxygène et des nutriments. Lorsqu'un arrêt cardiaque est diagnostiqué, un décès clinique est diagnostiqué. Si cette condition dure plus de 5 minutes, le cerveau s’éteint et la personne meurt. C’est toute l’importance du bon fonctionnement du cœur sans lequel le corps n’est pas viable.

    Le cœur est un corps composé principalement de tissus musculaires, il assure l'apport sanguin à tous les organes et tissus et présente l'anatomie suivante. Situé dans la moitié gauche de la poitrine, au niveau de la deuxième à la cinquième côte, le poids moyen est de 350 grammes. La base du coeur est formée par les oreillettes, le tronc pulmonaire et l'aorte tournés dans la direction de la colonne vertébrale, et les vaisseaux qui composent la base fixent le coeur dans la cavité thoracique. La pointe est formée par le ventricule gauche et a une forme arrondie, la zone tournée vers le bas et à gauche dans la direction des côtes.

    De plus, il y a quatre surfaces dans le coeur:

    • Avant ou arrière costal.
    • Inférieur ou diaphragmatique.
    • Et deux pulmonaires: droite et gauche.

    La structure du cœur humain est assez difficile, mais elle peut être décrite schématiquement comme suit. Sur le plan fonctionnel, il est divisé en deux parties: droite et gauche ou veineuse et artérielle. La structure à quatre chambres permet de diviser l’approvisionnement en sang en un petit et un grand cercle. Les oreillettes des ventricules sont séparées par des valves qui ne s'ouvrent que dans le sens du débit sanguin. Les ventricules droit et gauche séparent le septum interventriculaire, et entre les oreillettes se trouve l'interatrial.

    La paroi du coeur a trois couches:

    • L'épicarde, l'enveloppe externe, fusionne étroitement avec le myocarde et est recouvert par le sac péricardique du cœur, qui sépare le cœur des autres organes et, en maintenant une petite quantité de liquide entre ses feuilles, réduit les frottements tout en réduisant.
    • Myocarde - constitué de tissu musculaire, unique dans sa structure, il assure la contraction et effectue l'excitation et la conduction de l'impulsion. De plus, certaines cellules ont un automatisme, c’est-à-dire qu’elles sont capables de générer indépendamment des impulsions qui sont transmises par des voies conductrices à travers le myocarde. La contraction musculaire se produit - systole.
    • L'endocarde recouvre la surface interne des oreillettes et des ventricules et forme des valves cardiaques, qui sont des plis endocardiques constitués d'un tissu conjonctif avec une teneur élevée en fibres élastiques et en collagène.

    Le coeur

    Le cœur est l’un des organes les plus parfaits du corps humain, créé avec la plus grande délibération et la plus grande minutie. Il possède d'excellentes qualités: puissance fantastique, infatigable rare et capacité d'adaptation inimitable à l'environnement extérieur. Pas étonnant que beaucoup de gens considèrent le cœur comme un moteur humain, car en fait, il l'est. Si vous pensez simplement au travail colossal de notre "moteur", alors c'est un corps incroyable.

    Qu'est-ce que le coeur et quelles sont ses fonctions?

    La fonction principale du cœur est de fournir un flux sanguin constant et continu dans tout le corps. Par conséquent, le cœur est une pompe qui fait circuler le sang dans tout le corps et c'est sa principale fonction. Grâce au travail du cœur, le sang pénètre dans toutes les parties du corps et des organes, nourrit les tissus en nutriments et en oxygène, tout en nourrissant le sang lui-même en oxygène. Avec l'exercice, la vitesse (course) croissante et le stress - le cœur devrait produire une réponse instantanée et augmenter la vitesse et le nombre de contractions.

    Avec ce que le coeur est et quelles sont ses fonctions, nous nous sommes familiarisés, considérons maintenant la structure du coeur.

    Structure du coeur

    Pour commencer, il est utile de dire que le cœur humain est dans la partie gauche de la poitrine. Il est important de noter qu’il existe dans le monde un groupe de personnes uniques dont le cœur est situé non pas du côté gauche, comme d’habitude, mais du côté droit, ces personnes ont généralement une structure en miroir de l’organisme, de sorte que le cœur est situé dans la direction opposée à celle habituelle. sur le côté.

    Le cœur se compose de quatre chambres séparées (cavités):

    • Oreillette gauche;
    • Oreillette droite;
    • Ventricule gauche;
    • Ventricule droit
    Ces caméras sont divisées par des partitions.

    Car le flux de sang correspond aux valves qui sont dans le coeur. Dans l'oreillette gauche comprend les veines pulmonaires dans l'oreillette droite - creux (veine cave supérieure et veine cave inférieure). Des ventricules gauche et droit du tronc pulmonaire et de l'aorte ascendante.

    Le ventricule gauche avec l'oreillette gauche sépare la valve mitrale (valve bicuspide). Le ventricule droit et l'oreillette droite divisent la valve tricuspide. Les valves pulmonaire et aortique, responsables du flux sanguin des ventricules gauche et droit, se trouvent également dans le cœur.

    Cercles de circulation sanguine du coeur

    Comme on le sait, le cœur produit 2 types de cercles de circulation sanguine - il s’agit d’un grand et d’un petit cercle de circulation. La circulation systémique commence du ventricule gauche et se termine dans l'oreillette droite.

    La tâche d'un grand cercle de circulation sanguine est de fournir du sang à tous les organes du corps, ainsi qu'aux poumons eux-mêmes.

    La circulation pulmonaire provient du ventricule droit et se termine dans l'oreillette gauche.

    Quant au petit cercle de la circulation sanguine, il est responsable des échanges gazeux dans les alvéoles pulmonaires.

    Voici en bref un résumé des cercles de la circulation sanguine.

    Que fait le coeur?

    A quoi sert le coeur? Comme vous l'avez déjà compris, le cœur produit un flux sanguin continu dans tout le corps. Trois cents grammes de muscle, élastique et mobile - est une pompe d’aspiration et de refoulement en fonctionnement constant, dont la moitié droite aspire le sang des veines dans le corps et l’envoie dans les poumons pour un enrichissement en oxygène. Ensuite, le sang des poumons pénètre dans la moitié gauche du cœur et, avec un certain effort, mesuré par le niveau de pression artérielle, libère le sang.

    La circulation du sang pendant la circulation a lieu environ 100 000 fois par jour, à une distance de plus de 100 000 km (il s’agit de la longueur totale des vaisseaux du corps humain). Pour l'année, le nombre de contractions cardiaques atteint une magnitude astronomique - 34 millions. Pendant ce temps, pompé 3 millions de litres de sang. Travail géant! Quelles réserves étonnantes sont cachées dans ce moteur biologique!

    Il est intéressant de savoir: une réduction consomme de l’énergie, suffisante pour soulever un poids de 400 g à une hauteur d’un mètre. De plus, un coeur calme n'utilise que 15% de toute l'énergie dont il dispose. Dans le travail acharné, ce chiffre augmente à 35%.

    Contrairement aux muscles des muscles squelettiques, qui peuvent rester au repos pendant de longues heures, les cellules contractiles du myocarde travaillent inlassablement pendant de nombreuses années. Cela donne lieu à une exigence importante: l'alimentation en air doit être ininterrompue et optimale. S'il n'y a ni nutriments ni oxygène, la cellule mourra instantanément. Il ne peut pas s'arrêter et attendre des doses retardées de gaz et de glucose, car il ne crée pas les réserves nécessaires à la manœuvre dite. Sa vie est une gorge salutaire de sang frais.

    Mais un muscle riche en sang peut-il mourir de faim? Oui ça peut. Le fait est que le myocarde ne se nourrit pas de sang, qui est rempli de ses cavités. Son apport en oxygène et en nutriments essentiels passe par deux "pipelines" qui partent de la base de l'aorte et couronnent le muscle comme une couronne (d'où leur nom "coronaire" ou "coronaire"). Ils forment à leur tour un réseau dense de capillaires qui alimentent leurs propres tissus. Il y a beaucoup de branches de réserve - des garanties, qui dupliquent les principaux navires et vont en parallèle avec eux - quelque chose comme des branches et des conduits d'une grande rivière. De plus, les bassins des principaux «fleuves sanguins» ne sont pas divisés, mais reliés en un tout grâce aux vaisseaux transversaux - les anastomoses. En cas de catastrophe: blocage ou rupture - du sang coulera le long du canal de réserve et la perte sera plus que compensée. Ainsi, la nature a fourni non seulement la puissance cachée du mécanisme de pompage, mais également un système parfait pour remplacer l’approvisionnement en sang.

    Ce processus commun à tous les vaisseaux est particulièrement pathologique pour les artères coronaires. Après tout, ils sont très minces, le plus gros d'entre eux n'est pas plus large qu'une paille à travers laquelle ils boivent un cocktail. Joue un rôle et une caractéristique de la circulation sanguine dans le myocarde. Étrangement, dans ces artères en circulation intense, le sang s'arrête périodiquement. Les scientifiques expliquent cette bizarrerie comme suit. Contrairement aux autres vaisseaux, les artères coronaires sont affectées par deux forces opposées: la pression du pouls du sang circulant dans l'aorte et la contre-pression qui se produit au moment de la contraction du muscle cardiaque et tend à repousser le sang vers l'aorte. Lorsque les forces opposées deviennent égales, le flux sanguin s'arrête pendant une fraction de seconde. Ce temps est suffisant pour qu'une partie du matériel formant le thrombogène précipite dans le sang. C'est pourquoi l'athérosclérose coronarienne se développe de nombreuses années avant de se manifester dans les autres artères.

    Maladie cardiaque

    À présent, les maladies cardiovasculaires attaquent les gens à un rythme actif, en particulier chez les personnes âgées. Des millions de décès par an - c'est le résultat d'une maladie cardiaque. Cela signifie que trois patients sur cinq meurent directement d'une crise cardiaque. Les statistiques notent deux faits alarmants: la tendance à la croissance des maladies et leur rajeunissement.

    Les maladies du coeur comprennent 3 groupes de maladies qui affectent:

    • Valves cardiaques (malformations cardiaques congénitales ou acquises);
    • Vaisseaux cardiaques;
    • Coquilles de tissu du coeur.
    Athérosclérose C'est une maladie qui affecte les vaisseaux. Dans l'athérosclérose, il existe un chevauchement complet ou partiel des vaisseaux sanguins, ce qui affecte également le travail du cœur. Cette maladie particulière est la maladie cardiaque la plus fréquente. Les parois internes des vaisseaux sanguins du cœur ont une surface recouverte de dépôts de calcaire, scellant et rétrécissant la lumière des canaux vitaux (en latin, "infarctus" signifie "bloqué"). Pour le myocarde, l'élasticité des vaisseaux est très importante, car une personne vit dans une grande variété de modes moteurs. Par exemple, vous vous promenez tranquillement en regardant les fenêtres des magasins et vous vous rendez compte que vous devez être tôt à la maison, le bus dont vous avez besoin conduit jusqu'à un arrêt et vous vous précipitez pour l'attraper. En conséquence, le cœur commence à «courir» avec vous, modifiant radicalement le rythme de travail. Les vaisseaux alimentant le myocarde se dilatent dans ce cas - la puissance doit correspondre à la consommation énergétique accrue. Mais chez un patient atteint d'athérosclérose, la chaux qui enduit les vaisseaux sanguins transforme le cœur en pierre - elle ne répond pas à ses désirs, car il ne peut pas sauter le sang nécessaire au fonctionnement du myocarde pour nourrir le myocarde. C'est le cas d'une voiture dont la vitesse ne peut pas être augmentée si des canalisations encrassées n'introduisent pas une quantité suffisante d '"essence" dans les chambres de combustion.

    Insuffisance cardiaque. Par ce terme, on entend une maladie dans laquelle un complexe de troubles se produit en raison d'une diminution de la contractilité du myocarde, conséquence du développement de processus stagnants. Dans l'insuffisance cardiaque, la stagnation du sang se produit dans les deux circulations.

    Malformations cardiaques. En cas de malformations cardiaques, des dysfonctionnements peuvent survenir lors du fonctionnement de l'appareil à valve, ce qui peut entraîner une défaillance cardiaque. Les malformations cardiaques sont à la fois congénitales et acquises.

    Arythmie du coeur. Cette pathologie du coeur est causée par une violation du rythme, de la fréquence et de la séquence des battements de coeur. L'arythmie peut entraîner un certain nombre d'anomalies cardiaques.

    Angine de poitrine L'angine entraîne une privation d'oxygène du muscle cardiaque.

    Infarctus du myocarde. C’est l’un des types de coronaropathie, caractérisé par une insuffisance absolue ou relative de l’approvisionnement en sang dans la région du myocarde.

    Le coeur, sa structure et son travail. Cavités et valves cardiaques humaines

    Le cœur est un organe musculaire creux en forme de cône. Le coeur est situé dans la poitrine, derrière le sternum. La partie agrandie de celui-ci - la base - est tournée vers le haut, vers l’arrière et vers la droite, et l’étroit étroit vers le haut, vers l’avant, vers la gauche. Les deux tiers du cœur sont dans la moitié gauche de la poitrine, un tiers dans la moitié droite.

    La structure du coeur humain

    Les murs du coeur ont trois couches:

    • La couche externe recouvrant la surface du coeur est représentée par les cellules séreuses et est appelée l'épicarde;
    • la couche intermédiaire est formée par un tissu musculaire strié spécial. La contraction du muscle cardiaque, bien qu’elle soit striée, se produit involontairement. L'épaisseur de la paroi musculaire des oreillettes est moins prononcée que celle des ventricules. La couche intermédiaire s'appelle le myocarde;
    • la couche interne, l'endocarde, est représentée par les cellules endothéliales. Il tapisse les cavités cardiaques de l'intérieur et forme les valves cardiaques.
    Coeur mur structure

    Le cœur est situé dans la poche péricardique - le péricarde, qui sécrète un liquide qui réduit les frictions cardiaques lors des contractions.

    La partition longitudinale continue du cœur est divisée en deux moitiés qui ne communiquent pas entre elles - la droite et la gauche (cavités cardiaques):

    • Au sommet des deux moitiés sont les oreillettes droite et gauche;
    • dans la partie inférieure - les ventricules droit et gauche.

    Ainsi, le coeur humain est à quatre chambres.

    Cavités humaines

    En raison du développement plus important du myocarde (charge importante), les parois du ventricule gauche sont beaucoup plus épaisses que celles du droit.

    Le sang de toutes les parties du corps pénètre dans l'oreillette droite par la veine cave supérieure et inférieure. Du ventricule droit vient le tronc pulmonaire, à travers lequel le sang veineux pénètre dans les poumons.

    Quatre veines pulmonaires transportant le sang artériel des poumons s’écoulent dans l’oreillette gauche. L'aorte pénètre dans le ventricule gauche et transporte le sang artériel dans la circulation systémique.

    • Dans la moitié droite, il y a du sang veineux;
    • à gauche - artériel.

    Valves cardiaques

    Les oreillettes et les ventricules communiquent les uns avec les autres par des ouvertures atrioventriculaires équipées de valves à clapets.

    • Entre l'oreillette droite et le ventricule droit, la valve a trois portes (tricuspides) - une valve tricuspide.
    • entre l'oreillette gauche et le ventricule gauche - deux valves (à double aile) - valve mitrale.

    Des fils tendons sont fixés aux bords libres des valves faisant face au ventricule. À leur autre extrémité, ils sont attachés au mur du ventricule. Cela ne leur permet pas de se tourner dans la direction des oreillettes et ne permet pas le flux sanguin inverse des ventricules vers les oreillettes.

    Valves cardiaques humaines

    Dans l'aorte, à la frontière avec le ventricule gauche et dans le tronc pulmonaire, à la frontière avec le ventricule droit, il y a des valves en forme de trois poches s'ouvrant dans la direction du flux sanguin dans ces vaisseaux. En raison de sa forme, les valves sont appelées croissant. Avec une diminution de la pression dans les ventricules, ils se remplissent de sang, leurs bords se resserrent, fermant la lumière de l'aorte et du tronc pulmonaire et empêchant le sang de pénétrer à nouveau dans le cœur.

    Au cours de l'activité cardiaque, le muscle cardiaque effectue une énorme quantité de travail. Par conséquent, il faut un apport constant de nutriments, d'oxygène et d'élimination des produits de décomposition. Le cœur reçoit le sang artériel de deux artères, droite et gauche, qui partent de l'aorte sous les ailes des valves semi-lunaires. Situées à la frontière des oreillettes et des ventricules, sous forme de couronne, ces artères sont appelées coronaires (coronaires). Du muscle cardiaque, le sang est recueilli dans les propres veines du cœur, qui se déversent dans l'oreillette droite.

    La raison du mouvement du sang dans les vaisseaux sanguins est la différence de pression dans les artères et les veines. Cette différence de pression est créée et maintenue par les contractions rythmiques du cœur. Le cœur humain, au repos, fait environ 70 contractions rythmiques par minute, pompant environ 5 litres de sang. Après plus de 70 ans de vie, son cœur pompe environ 150 000 tonnes de sang - la performance est incroyable pour un organe pesant 300 g! La raison de cette performance est la nature rythmique du rythme cardiaque.

    Le cycle de l'activité cardiaque comprend trois phases: la contraction auriculaire, la contraction ventriculaire et la pause générale. La première phase dure 0,1 s, la seconde 0,3 et la troisième 0,4 s. Pendant la pause générale, les oreillettes et les ventricules sont détendus.

    Pendant le cycle cardiaque, les oreillettes se contractent avec 0,1 s et 0,7 s dans un état relâché; les ventricules se contractent pendant 0,3 seconde et 0,5 seconde. Ceci explique la capacité du muscle cardiaque à travailler sans se fatiguer tout au long de la vie.

    Automatique du coeur

    Contrairement au muscle squelettique strié, les fibres du muscle cardiaque sont interconnectées par des processus. Par conséquent, l'excitation provenant d'une région du cœur peut se propager à d'autres fibres musculaires.

    Les battements de coeur sont involontaires. Une personne ne peut pas amplifier ou modifier le rythme cardiaque. En même temps, le coeur est automatique. Cela signifie que les impulsions qui conduisent à la contraction apparaissent en lui, alors qu’elles s’adressent aux muscles squelettiques le long des fibres centrifuges du système nerveux central.

    Le cœur de la grenouille, placé dans la solution en remplacement du sang, continue de diminuer de façon continue. La cause de l'automatisation du cœur n'a pas été complètement clarifiée. Cependant, des études électrophysiologiques ont montré que des modifications du potentiel de la membrane cellulaire se produisent de manière rythmique dans les cellules du système conducteur du cœur, provoquant ainsi l'apparition d'une excitation provoquant une contraction du muscle cardiaque.

    Régulation nerveuse et humorale de l'activité cardiaque

    La fréquence et la force des contractions cardiaques dans le corps sont régulées par les systèmes nerveux et endocrinien. Le cœur est innervé par les nerfs errants et sympathiques. Le nerf vague ralentit la fréquence des contractions et réduit leur force. Les nerfs sympathiques, au contraire, augmentent la fréquence et la force des contractions.

    Certaines substances excrétées dans le sang par divers organes ont une incidence sur l'activité cardiaque. L'hormone surrénale - l'adrénaline, comme les nerfs sympathiques, augmente la fréquence et la force des contractions cardiaques. Par conséquent, la régulation neurohumorale assure l’adaptation de l’activité du cœur et, par conséquent, de l’intensité de la circulation sanguine aux besoins de l’organisme et aux conditions environnementales.

    Le pouls et sa définition

    Au moment des contractions du cœur, du sang est libéré dans l'aorte et la pression dans cette dernière augmente. Une vague de pression accrue se propage à travers les artères jusqu'aux capillaires, provoquant des oscillations en forme de vagues des parois des artères. Ces oscillations rythmiques de la paroi vasculaire artérielle, causées par le travail du cœur, sont appelées pouls.

    Le pouls peut être facilement ressenti sur les artères situées sur l'os (radiations, temporal, etc.); le plus souvent - sur l'artère radiale. Le pouls peut déterminer la fréquence et l'intensité des contractions cardiaques, ce qui peut parfois servir de signe diagnostique. Chez une personne en bonne santé, le pouls est rythmé. Avec une maladie cardiaque peut être observé des troubles du rythme - arythmie.

    Anatomie et physiologie du coeur: structure, fonction, hémodynamique, cycle cardiaque, morphologie

    La structure du cœur de tout organisme a de nombreuses nuances caractéristiques. Au cours du processus de phylogenèse, c’est-à-dire de la transformation des organismes vivants en complexes, le cœur des oiseaux, des animaux et des humains acquiert quatre chambres au lieu de deux chambres chez les poissons et de trois chambres chez les amphibiens. Une telle structure complexe convient le mieux pour séparer le flux de sang artériel et veineux. En outre, l’anatomie du cœur humain implique une grande partie des plus petits détails, chacun remplissant ses fonctions strictement définies.

    Coeur comme organe

    Ainsi, le cœur n'est rien de plus qu'un organe creux constitué d'un tissu musculaire spécifique, qui assure la fonction motrice. Le cœur est situé dans la poitrine, derrière le sternum, plus à gauche, et son axe longitudinal est dirigé vers l’avant, vers la gauche et vers le bas. La partie antérieure du cœur est bordée par les poumons, presque entièrement recouverts par eux, ne laissant qu'une petite partie immédiatement adjacente à la poitrine de l'intérieur. Les limites de cette partie sont autrement appelées matité cardiaque absolue et peuvent être déterminées en tapotant la paroi thoracique (percussion).

    Chez les personnes de constitution normale, le cœur occupe une position semi-horizontale dans la cavité thoracique, il est presque vertical chez les individus de constitution asthénique (minces et grands) et quasi horizontal dans les cas d'hypersthéniques (dense, trapu, avec une masse musculaire importante).

    La paroi arrière du cœur est adjacente à l'œsophage et aux gros vaisseaux principaux (de l'aorte thoracique, la veine cave inférieure). La partie inférieure du coeur est située sur le diaphragme.

    structure externe du coeur

    Caractéristiques de l'âge

    Le cœur humain commence à se former à la troisième semaine de la période prénatale et se poursuit tout au long de la gestation, en passant par les stades de la cavité à une chambre au cœur à quatre chambres.

    développement du coeur dans la période prénatale

    La formation de quatre chambres (deux oreillettes et deux ventricules) se produit déjà au cours des deux premiers mois de la grossesse. Les plus petites structures sont complètement formées pour les genres. C'est au cours des deux premiers mois que le cœur de l'embryon est le plus vulnérable à l'influence négative de certains facteurs sur la future mère.

    Le cœur du fœtus participe à la circulation sanguine à travers son corps, mais il se distingue par des cercles de circulation sanguine: le fœtus n'a pas encore sa propre respiration par les poumons et il «respire» par le sang placentaire. Au cœur du fœtus, certaines ouvertures permettent de "couper" le flux sanguin pulmonaire de la circulation avant la naissance. Pendant l'accouchement, accompagnés du premier cri du nouveau-né, et donc de la pression intrathoracique croissante et de la pression dans le cœur du bébé, ces trous se ferment. Mais ce n'est pas toujours le cas, et ils peuvent rester avec l'enfant, par exemple une fenêtre ovale ouverte (à ne pas confondre avec un défaut tel qu'un défaut septal auriculaire). Une fenêtre ouverte n'est pas un défaut cardiaque et, par la suite, à mesure que l'enfant grandit, il devient envahi par la végétation.

    hémodynamique dans le cœur avant et après la naissance

    Le cœur d'un nouveau-né a une forme arrondie et ses dimensions mesurent 3 à 4 cm de longueur et 3 à 3,5 cm de largeur. Au cours de la première année de la vie d’un enfant, la taille du cœur augmente considérablement et sa longueur est supérieure à sa largeur. La masse du cœur d'un nouveau-né est d'environ 25 à 30 grammes.

    Au fur et à mesure que le bébé grandit et se développe, le cœur grandit également, parfois de manière nettement supérieure au développement de l'organisme lui-même en fonction de l'âge. À l'âge de 15 ans, la masse cardiaque augmente presque de dix fois et son volume de plus de cinq fois. Le cœur grandit plus intensément jusqu'à cinq ans, puis pendant la puberté.

    Chez l'adulte, le cœur mesure environ 11-14 cm de long et 8-10 cm de large. Beaucoup croient à juste titre que la taille du cœur de chaque personne correspond à celle de son poing fermé. La masse du cœur chez les femmes est d’environ 200 grammes et chez les hommes, entre 300 et 350 grammes.

    Après 25 ans, les changements dans le tissu conjonctif du cœur commencent, ce qui forme les valves cardiaques. Leur élasticité n’est pas la même que dans l’enfance et l’adolescence et les bords peuvent devenir inégaux. Au fur et à mesure que la personne grandit, puis vieillit, des modifications se produisent dans toutes les structures du cœur, ainsi que dans les vaisseaux qui le nourrissent (dans les artères coronaires). Ces changements peuvent conduire au développement de nombreuses maladies cardiaques.

    Caractéristiques anatomiques et fonctionnelles du coeur

    Sur le plan anatomique, le cœur est un organe divisé en quatre chambres par des cloisons et des valves. Les deux "supérieurs" sont appelés les oreillettes (atrium), et les deux "inférieurs" - les ventricules (ventriculum). Le septum inter-auriculaire est situé entre les oreillettes droite et gauche, et entre les ventricules - interventriculaire. Normalement, ces partitions ne comportent pas de trous. S'il y a des trous, cela conduit à un mélange de sang artériel et veineux et, en conséquence, à une hypoxie de nombreux organes et tissus. Ces trous sont appelés défauts du septum et sont liés à des défauts cardiaques.

    structure de base des cavités cardiaques

    Les limites entre les chambres supérieure et inférieure sont les ouvertures atrio-ventriculaires - à gauche, recouvertes de feuillets de la valve mitrale et à droite, recouvertes de feuillets de la valve tricuspide. L'intégrité du septum et le bon fonctionnement des cuspides de la valve empêchent le mélange du flux sanguin dans le cœur et contribuent à un mouvement de sang unidirectionnel clair.

    Les oreillettes et les ventricules sont différents - les oreillettes sont plus petites que les ventricules et l'épaisseur de la paroi est plus petite. Ainsi, le mur des oreillettes ne fait qu'environ trois millimètres, le mur du ventricule droit - environ 0,5 cm, et celui de gauche - environ 1,5 cm.

    Les oreillettes ont de petites protubérances - oreilles. Ils ont une fonction d'aspiration insignifiante pour une meilleure injection de sang dans la cavité auriculaire. L'oreillette droite près de son oreille se jette dans la bouche de la veine cave et dans les veines pulmonaires gauches de quatre (moins souvent cinq). L'artère pulmonaire (communément appelée le tronc pulmonaire) à droite et le bulbe aortique à gauche s'étendent des ventricules.

    la structure du coeur et ses vaisseaux

    À l'intérieur, les cavités supérieures et inférieures du cœur sont également différentes et ont leurs propres caractéristiques. La surface des oreillettes est plus lisse que les ventricules. À partir de l'anneau valvulaire entre l'oreillette et le ventricule, des valves minces du tissu conjonctif prennent naissance - bicuspides (mitrale) à gauche et tricuspides (tricuspides) à droite. L'autre bord de la feuille est tourné à l'intérieur des ventricules. Mais pour qu’ils ne pendent pas librement, ils sont soutenus, pour ainsi dire, par de minces fils tendineux appelés accords. Ils sont comme des ressorts, étirés lors de la fermeture des valves de la valve et se contractent lorsque les valves sont ouvertes. Les cordes proviennent des muscles papillaires de la paroi ventriculaire - trois dans le ventricule droit et deux dans le ventricule gauche. C'est pourquoi la cavité ventriculaire a une surface interne rugueuse et bosselée.

    Les fonctions des oreillettes et des ventricules varient également. En raison du fait que les oreillettes doivent pousser le sang dans les ventricules et non dans les vaisseaux plus grands et plus longs, elles ont moins de résistance pour vaincre la résistance du tissu musculaire. Les oreillettes sont donc de plus petite taille et leurs parois plus minces que celles des ventricules. Les ventricules poussent le sang dans l'aorte (à gauche) et dans l'artère pulmonaire (à droite). Conditionnellement, le cœur est divisé en deux parties: la moitié droite et la partie gauche. La moitié droite est réservée au flux de sang veineux et la gauche au sang artériel. Le «cœur droit» est indiqué schématiquement en bleu et le «cœur gauche» en rouge. Normalement, ces flux ne se mélangent jamais.

    hémodynamique cardiaque

    Un cycle cardiaque dure environ 1 seconde et s'effectue comme suit. Au moment de remplir le sang avec des oreillettes, leurs parois se détendent - une diastole auriculaire se produit. Les valves de la veine cave et des veines pulmonaires sont ouvertes. Les valves tricuspide et mitrale sont fermées. Ensuite, les parois auriculaires se resserrent et poussent le sang dans les ventricules, les valvules tricuspide et mitrale ouvertes. À ce stade, il se produit une systole (contraction) des oreillettes et une diastole (relaxation) des ventricules. Une fois le sang prélevé par les ventricules, les valves tricuspide et mitrale se ferment et les valves de l'aorte et de l'artère pulmonaire s'ouvrent. En outre, les ventricules (systole ventriculaire) sont réduites et les oreillettes sont à nouveau remplies de sang. Il y a une diastole commune du coeur.

    La fonction principale du cœur est réduite au pompage, c'est-à-dire à l'introduction d'un certain volume de sang dans l'aorte avec une pression et une vitesse telles que le sang est acheminé vers les organes les plus éloignés et les plus petites cellules du corps. De plus, le sang artériel avec une teneur élevée en oxygène et en nutriments, qui pénètre dans la moitié gauche du cœur par les vaisseaux des poumons (poussé au cœur par les veines pulmonaires), est poussé dans l'aorte.

    Le sang veineux, avec une faible teneur en oxygène et en autres substances, est collecté dans toutes les cellules et tous les organes avec un système de veines creuses et s'écoule dans la moitié droite du cœur à partir des veines creuses supérieure et inférieure. Ensuite, le sang veineux est poussé du ventricule droit dans l'artère pulmonaire, puis dans les vaisseaux pulmonaires afin d'effectuer un échange de gaz dans les alvéoles des poumons et de s'enrichir en oxygène. Dans les poumons, le sang artériel est collecté dans les veinules et les veines pulmonaires, puis circule à nouveau dans la moitié gauche du cœur (dans l'oreillette gauche). Et si régulièrement, le cœur pompe le sang à travers le corps à une fréquence de 60 à 80 battements par minute. Ces processus sont désignés par le concept de "cercles de circulation sanguine". Il y en a deux - petits et grands:

    • Le petit cercle inclut le flux de sang veineux de l'oreillette droite à travers la valve tricuspide dans le ventricule droit - puis dans l'artère pulmonaire - puis dans l'artère pulmonaire - enrichissement en oxygène du sang dans les alvéoles pulmonaires - flux sanguin artériel dans les plus petites veines des poumons - dans les veines pulmonaires - dans les veines pulmonaires - dans l'oreillette gauche.
    • Le grand cercle inclut le flux de sang artériel de l'oreillette gauche à travers la valve mitrale dans le ventricule gauche - à travers l'aorte dans le lit artériel de tous les organes - après échange gazeux dans les tissus et les organes, le sang devient veineux (avec une teneur élevée en dioxyde de carbone au lieu d'oxygène) - puis dans le lit veineux des organes - le système de la veine cave est dans l'oreillette droite.

    Vidéo: anatomie du coeur et cycle cardiaque brièvement

    Caractéristiques morphologiques du coeur

    Pour que les fibres du muscle cardiaque se contractent de manière synchrone, il est nécessaire de leur amener des signaux électriques qui excitent les fibres. C'est une autre capacité de la conduction cardiaque.

    La conductivité et la contractilité sont possibles car le cœur en mode autonome produit de l'électricité en lui-même. Ces fonctions (automatisme et excitabilité) sont assurées par des fibres spéciales, qui font partie du système conducteur. Ce dernier est représenté par les cellules électriquement actives du nœud sinusal, du nœud atrio-ventriculaire, du faisceau de His (avec deux jambes - droite et gauche), ainsi que des fibres de Purkinje. Dans le cas où un patient a un dommage du myocarde affecte ces fibres, un trouble du rythme cardiaque, autrement appelé arythmies, se développe.

    Normalement, l’impulsion électrique prend naissance dans les cellules du nœud sinusal situé dans la zone de l’appendice auriculaire droit. Pendant une courte période (environ une demi-milliseconde), l'impulsion se propage dans le myocarde auriculaire, puis pénètre dans les cellules de la jonction atrio-ventriculaire. Habituellement, les signaux sont transmis au nœud AV par trois voies principales: faisceaux Wenkenbach, Torel et Bachmann. Dans les cellules de nœud AV, le temps de transmission des impulsions est prolongé de 20 à 80 millisecondes, puis les impulsions passent par les jambes droite et gauche (ainsi que par les branches avant et arrière de la jambe gauche) du faisceau de His jusqu'aux fibres de Purkinje, puis jusqu'au myocarde de travail. La fréquence de transmission des impulsions sur tous les trajets est égale à la fréquence cardiaque et est de 55 à 80 impulsions par minute.

    Ainsi, le myocarde ou muscle cardiaque est la gaine médiane de la paroi du cœur. Les coquilles interne et externe sont du tissu conjonctif, et sont appelées l'endocarde et l'épicarde. La dernière couche fait partie du sac péricardique, ou "chemise" en forme de cœur. Entre la foliole interne du péricarde et l'épicarde, une cavité est formée, remplie d'une très petite quantité de liquide, pour assurer un meilleur glissement des folioles du péricarde aux moments de la fréquence cardiaque. Normalement, le volume de fluide peut atteindre 50 ml. Un excès de ce volume peut indiquer une péricardite.

    la structure de la paroi du coeur et de la coquille

    Apport sanguin et innervation du coeur

    Bien que le cœur soit une pompe pour fournir à tout le corps en oxygène et en nutriments, il a également besoin de sang artériel. À cet égard, toute la paroi du cœur possède un réseau artériel bien développé, qui est représenté par une ramification des artères coronaires (coronaires). Les embouchures des artères coronaires droite et gauche partent de la racine aortique et se divisent en branches qui pénètrent dans l’épaisseur de la paroi du cœur. Si ces artères principales sont obstruées par des caillots sanguins et des plaques d'athérosclérose, le patient développera une crise cardiaque et l'organe ne sera plus en mesure d'exercer pleinement ses fonctions.

    localisation des artères coronaires alimentant le muscle cardiaque (myocarde)

    La fréquence à laquelle le cœur bat, est influencée par les fibres nerveuses qui s'étendent des plus importants conducteurs nerveux - le nerf vague et le tronc sympathique. Les premières fibres ont la capacité de ralentir la fréquence du rythme, les dernières - d'augmenter la fréquence et la force du rythme cardiaque, c'est-à-dire d'agir comme de l'adrénaline.

    En conclusion, il convient de noter que l'anatomie du cœur peut présenter des anomalies chez chaque patient. Par conséquent, seul un médecin est en mesure de déterminer le taux ou la pathologie chez l'homme après un examen, ce qui permet de visualiser le système cardiovasculaire de manière très informative.