Principal

Le diabète

Système cardiovasculaire: structure et fonction

Le système cardiovasculaire humain (circulatoire - nom obsolète) est un complexe d'organes qui fournit à toutes les parties du corps (à quelques exceptions près) les substances nécessaires et élimine les déchets. C'est le système cardiovasculaire qui fournit à toutes les parties du corps l'oxygène nécessaire et constitue donc la base de la vie. Il n'y a pas de circulation sanguine dans certains organes seulement: le cristallin, les cheveux, les ongles, l'émail et la dentine de la dent. Dans le système cardiovasculaire, il existe deux composants: le complexe du système circulatoire lui-même et le système lymphatique. Traditionnellement, ils sont considérés séparément. Mais, malgré leur différence, ils remplissent un certain nombre de fonctions communes et ont également une origine et un plan de structure communs.

L'anatomie du système circulatoire implique sa division en 3 composants. Ils diffèrent de manière significative dans la structure, mais fonctionnellement ils sont un tout. Ce sont les organes suivants:

Une sorte de pompe qui pompe le sang dans les vaisseaux. C'est un organe creux fibreux musculaire. Situé dans la cavité de la poitrine. L'histologie des organes distingue plusieurs tissus. Le plus important et significatif en taille est musculaire. L'intérieur et l'extérieur de l'organe sont recouverts de tissu fibreux. Les cavités du cœur sont divisées par des cloisons en 4 chambres: les oreillettes et les ventricules.

Chez une personne en bonne santé, la fréquence cardiaque varie entre 55 et 85 battements par minute. Cela se produit tout au long de la vie. Donc, sur 70 ans, il y a 2,6 milliards de coupes. Dans ce cas, le cœur pompe environ 155 millions de litres de sang. Le poids d’un organe varie entre 250 et 350 g. La contraction des cavités cardiaques est appelée systole et la relaxation est appelée diastole.

C'est un long tube creux. Ils s'éloignent du cœur et, barrant à répétition, vont à toutes les parties du corps. Immédiatement après avoir quitté ses cavités, les vaisseaux ont un diamètre maximum, qui diminue au fur et à mesure de son élimination. Il existe plusieurs types de navires:

  • Artères. Ils transportent le sang du coeur à la périphérie. Le plus grand d'entre eux est l'aorte. Il quitte le ventricule gauche et transporte le sang dans tous les vaisseaux sauf les poumons. Les branches de l'aorte sont divisées plusieurs fois et pénètrent dans tous les tissus. L'artère pulmonaire transporte le sang vers les poumons. Cela vient du ventricule droit.
  • Les vaisseaux de la microvascularisation. Ce sont les artérioles, les capillaires et les veinules - les plus petits vaisseaux. Le sang à travers les artérioles se trouve dans l'épaisseur des tissus des organes internes et de la peau. Ils se ramifient dans des capillaires qui échangent des gaz et d'autres substances. Après cela, le sang est collecté dans les veinules et coule.
  • Les veines sont des vaisseaux qui transportent le sang au coeur. Ils se forment en augmentant le diamètre des veinules et leur fusion multiple. Les plus gros vaisseaux de ce type sont les veines creuses inférieure et supérieure. Ils coulent directement dans le coeur.

Le tissu particulier du corps, liquide, se compose de deux composants principaux:

Le plasma est la partie liquide du sang dans laquelle se trouvent tous les éléments formés. Le pourcentage est de 1: 1. Le plasma est un liquide jaunâtre trouble. Il contient un grand nombre de molécules de protéines, glucides, lipides, divers composés organiques et électrolytes.

Les cellules sanguines comprennent: les érythrocytes, les leucocytes et les plaquettes. Ils se forment dans la moelle osseuse et circulent dans les vaisseaux tout au long de la vie. Dans certaines circonstances, seuls les leucocytes (inflammation, introduction d'un organisme étranger ou d'une matière) peuvent traverser la paroi vasculaire et pénétrer dans l'espace extracellulaire.

Un adulte contient 2,5 à 7,5 (en fonction de la masse) ml de sang. Le nouveau-né - de 200 à 450 ml. Les vaisseaux sanguins et le travail du cœur constituent le principal indicateur du système circulatoire - la pression artérielle. Il varie de 90 mm Hg. jusqu'à 139 mm de mercure pour systolique et 60-90 - pour diastolique.

Tous les navires forment deux cercles fermés: grand et petit. Cela garantit un apport simultané ininterrompu d'oxygène au corps, ainsi qu'un échange de gaz dans les poumons. Chaque circulation commence par le coeur et se termine là.

Petit va du ventricule droit à l'artère pulmonaire en passant par les poumons. Ici, il branche plusieurs fois. Les vaisseaux sanguins forment un réseau capillaire dense autour de toutes les bronches et des alvéoles. À travers eux, il y a un échange de gaz. Le sang, riche en dioxyde de carbone, le transmet à la cavité des alvéoles et reçoit en retour de l'oxygène. Après quoi les capillaires sont successivement assemblés en deux veines et vont à l’oreillette gauche. La circulation pulmonaire se termine. Le sang va dans le ventricule gauche.

Le grand cercle de la circulation sanguine commence par un ventricule gauche. Au cours de la systole, le sang va dans l'aorte, à partir de laquelle de nombreux vaisseaux (artères) se ramifient. Ils sont divisés plusieurs fois jusqu'à devenir des capillaires qui alimentent tout le corps en sang - de la peau au système nerveux. Voici l'échange de gaz et de nutriments. Après quoi, le sang est recueilli de manière séquentielle dans deux grandes veines pour atteindre l’oreillette droite. Le grand cercle se termine. Le sang de l'oreillette droite pénètre dans le ventricule gauche et tout recommence.

Le système cardiovasculaire remplit plusieurs fonctions importantes dans le corps:

  • Nutrition et oxygène.
  • Maintien de l'homéostasie (constance des conditions dans l'ensemble de l'organisme).
  • Protection.

L'apport en oxygène et en nutriments est le suivant: le sang et ses composants (globules rouges, protéines et plasma) fournissent de l'oxygène, des glucides, des lipides, des vitamines et des oligo-éléments à toutes les cellules. Dans le même temps, ils en retirent du dioxyde de carbone et des déchets dangereux (déchets).

Les conditions permanentes dans l'organisme sont assurées par le sang lui-même et ses composants (érythrocytes, plasma et protéines). Ils agissent non seulement comme vecteurs, mais régulent également les indicateurs d'homéostasie les plus importants: ph, température corporelle, taux d'humidité, quantité d'eau dans les cellules et espace intercellulaire.

Les lymphocytes jouent un rôle protecteur direct. Ces cellules sont capables de neutraliser et de détruire les matières étrangères (microorganismes et matières organiques). Le système cardiovasculaire assure leur livraison rapide à n'importe quel coin du corps.

Au cours du développement intra-utérin, le système cardiovasculaire présente un certain nombre de caractéristiques.

  • Un message est établi entre les oreillettes ("fenêtre ovale"). Il fournit un transfert de sang direct entre eux.
  • La circulation pulmonaire ne fonctionne pas.
  • Le sang de la veine pulmonaire passe dans l'aorte par un canal ouvert spécial (canal de Batalov).

Le sang est enrichi en oxygène et en nutriments dans le placenta. De là, par la veine ombilicale, il pénètre dans la cavité abdominale par l’ouverture du même nom. Puis le vaisseau coule dans la veine hépatique. D'où, en passant à travers l'organe, le sang entre dans la veine cave inférieure, pour se vider, il se jette dans l'oreillette droite. À partir de là, presque tout le sang va à gauche. Seule une petite partie est injectée dans le ventricule droit, puis dans la veine pulmonaire. Le sang des organes est recueilli dans les artères ombilicales qui vont au placenta. Ici, il est à nouveau enrichi en oxygène, reçoit des nutriments. Dans le même temps, le dioxyde de carbone et les produits métaboliques du bébé passent dans le sang de la mère, organisme qui les élimine.

Le système cardiovasculaire chez les enfants après la naissance subit une série de changements. Le canal de Batalov et le trou ovale sont envahis par la végétation. Les vaisseaux ombilicaux se vident et se transforment en un ligament rond du foie. La circulation pulmonaire commence à fonctionner. Entre 5 et 7 jours (maximum - 14 ans), le système cardiovasculaire acquiert les caractéristiques qui persistent chez une personne toute sa vie. Seule la quantité de sang en circulation change à différents moments. Au début, il augmente et atteint son maximum entre 25 et 27 ans. Après seulement 40 ans, le volume de sang commence à diminuer légèrement et après 60 à 65 ans, il reste entre 6% et 7% du poids corporel.

À certaines périodes de la vie, la quantité de sang en circulation augmente ou diminue temporairement. Ainsi, pendant la grossesse, le volume plasmatique devient supérieur de 10% à celui d'origine. Après l'accouchement, il diminue à la normale en 3-4 semaines. Au cours d'un jeûne et d'un effort physique imprévu, la quantité de plasma diminue de 5 à 7%.

En quoi consiste le système cardiovasculaire humain et comment

La structure et la fonction du système cardiovasculaire, qui assure la circulation sanguine et lymphatique dans tout le corps, constituent une section distincte de l'anatomie. Il s’agit du système le plus important du corps, qui repose sur un complexe complexe de veines, de vaisseaux sanguins, de capillaires, d’artères et d’aorte.

Cet article est consacré au fonctionnement du système cardiovasculaire et à ses composants principaux. Vous apprendrez le fonctionnement des veines, des artères et de nombreuses autres informations utiles.

La structure et le travail du système cardiovasculaire humain (avec photo)

L'activité vitale du corps n'est possible que si l'apport de nutriments, d'oxygène, d'eau dans chaque cellule et l'élimination des produits métaboliques sécrétés par la cellule. Cette tâche est effectuée par le système cardiovasculaire, qui est un système de tubes contenant du sang et de la lymphe, et le cœur, l'organe central responsable du mouvement de ce liquide.

Le cœur et les vaisseaux sanguins de la structure du système cardiovasculaire forment un complexe fermé dans lequel le sang se déplace en raison des contractions du muscle cardiaque et des cellules musculaires lisses des parois des vaisseaux. Vaisseaux sanguins: artères qui transportent le sang du cœur, veines à travers lesquelles le sang circule vers le cœur et microvasculature constituée d’artérioles, de capillaires et de veinules.

Les vaisseaux sanguins ne sont absents que dans la muqueuse épithéliale de la peau et des muqueuses, dans les cheveux, les ongles, la cornée des yeux et le cartilage articulaire.

Toutes les artères, à l'exception des artères pulmonaires, contiennent du sang enrichi en oxygène. La paroi de l'artère est composée de trois membranes: la partie interne, la partie centrale et la partie externe. La gaine moyenne de l'artère est riche en cellules musculaires lisses disposées en spirale, qui se contractent et se détendent sous l'influence du système nerveux.

La partie distale de la structure générale du système cardiovasculaire - le lit de la microcirculation - est la voie du flux sanguin local, où l’interaction du sang et des tissus est assurée. Le lit de microcirculation commence par le plus petit vaisseau artériel, l'artériole, et se termine par une veinule. Des artérioles, de nombreux capillaires régulent le flux sanguin. Les capillaires s’écoulent dans les plus petites veines (veinules) qui s’y déversent.

Le département le plus important de la structure du système cardiovasculaire humain est constitué par les capillaires, qui effectuent le métabolisme et les échanges gazeux. La surface totale d'échange des capillaires d'un adulte atteint 1000 m2.

De plus, le système cardiovasculaire est constitué de veines qui, à l'exception des voies pulmonaires, transportent le sang du cœur, pauvre en oxygène et enrichi en dioxyde de carbone. La paroi veineuse est également constituée de trois coquilles, similaires aux couches de la paroi artérielle.

Faites attention à la photo: dans le système cardiovasculaire, à l'intérieur de la plupart des veines moyennes et de certaines grosses veines, des valves permettent au sang de ne circuler que dans la direction du cœur, empêchant ainsi le reflux de sang dans les veines et protégeant ainsi le cœur des consommations d'énergie inutiles sang surgissant constamment dans les veines. Les veines de la moitié supérieure du corps n'ont pas de valves. Le nombre total de veines est supérieur à celui des artères et la taille totale du lit veineux est supérieure à la taille de l'artère. Le flux sanguin dans les veines est plus faible que dans les artères, dans les veines du corps et des membres inférieurs, le sang coule contre la gravité.

De plus, dans une présentation accessible, des informations sont présentées sur la structure et le fonctionnement du système cardiovasculaire en général et de ses composants en particulier.

Fonctions et caractéristiques structurelles des petits, grands et cardiaques cercles de la circulation sanguine

Le système cardiovasculaire unit le cœur et les vaisseaux sanguins, formant deux cercles de circulation - grand et petit. Schématiquement, la structure du petit et du grand cercle de la circulation sanguine est la suivante. Le sang coule de l'aorte, dans laquelle la pression est élevée (en moyenne 100 mmHg), à travers les capillaires, où la pression est très basse (15-25 mmHg), à travers le système de vaisseaux dans lequel la pression diminue progressivement. À partir des capillaires, le sang pénètre dans les veinules (pression de 12-15 mm Hg), puis dans les veines (pression de 3 à 5 mm Hg). Dans les veines creuses, à travers lesquelles le sang veineux coule dans l'oreillette droite, la pression est de 1-3 mm Hg. Art., Et dans l'atrium - environ 0 mm Hg. Art. En conséquence, la vitesse du flux sanguin diminue de 50 cm / s dans l'aorte à 0,07 cm / s dans les capillaires et les veinules. Chez l'homme, les grands et les petits cercles de la circulation sanguine sont divisés.

Familiarisez-vous avec la structure des cercles de la circulation sanguine et leurs fonctions dans le corps humain.

La petite circulation ou circulation pulmonaire est un système de vaisseaux sanguins qui commence dans le ventricule droit du cœur, à partir duquel le sang appauvri en oxygène pénètre dans le tronc pulmonaire, qui se sépare dans les artères pulmonaires droite et gauche; ces derniers, à leur tour, se ramifient dans les poumons, respectivement dans les artères, puis dans les capillaires. Les réseaux capillaires jouent un rôle considérable dans la structure d'un petit cercle de circulation sanguine. Dans les réseaux capillaires qui entrelacent les alvéoles, le sang dégage du dioxyde de carbone et est enrichi en oxygène. Le sang artériel s'écoule des capillaires dans les veines, qui sont agrandies et deux de chaque côté s'écoulent dans l'oreillette gauche, où se termine le petit cercle de la circulation sanguine.

La grande circulation sanguine ou corporelle du sang sert à fournir des nutriments et de l'oxygène à tous les organes et tissus du corps. La structure de la circulation systémique commence dans le ventricule gauche du cœur, où le sang artériel coule de l'oreillette gauche. L'aorte s'étend du ventricule gauche d'où partent les artères, atteignant tous les organes et tissus du corps et se ramifiant dans leur épaisseur jusqu'aux artérioles et capillaires; ces derniers passent dans les veinules et plus loin dans les veines. À travers les parois des capillaires, le métabolisme et les échanges gazeux ont lieu entre le sang et les tissus corporels. Le sang artériel qui coule dans les capillaires dégage des nutriments et de l'oxygène et reçoit des produits métaboliques et du dioxyde de carbone. Les veines se fondent dans deux grands troncs - les veines creuses supérieure et inférieure, qui se jettent dans l'oreillette droite, où se termine le grand cercle de circulation sanguine.

Une fonction importante de la circulation sanguine est exercée par le troisième cercle, ou cœur, servant le cœur lui-même. Il commence par les artères coronaires du cœur émergeant de l'aorte et se termine par les veines du cœur. Ces derniers se fondent dans le sinus coronaire, qui se jette dans l'oreillette droite. L'aorte de la circulation cardiaque commence par l'expansion - le bulbe aortique, à partir duquel s'étendent les artères coronaires gauche et gauche. Le bulbe va dans la partie ascendante de l'aorte. Courbant à gauche, l'arc aortique passe dans la partie descendante de l'aorte. Du côté concave de l'arc aortique, des branches s'étendent jusqu'à la trachée, les bronches et le thymus; Trois grands vaisseaux partent du côté convexe de l'arc: à droite la tête brachiale, à gauche les artères carotides commune gauche et sous-clavières gauches. Le tronc brachio-céphalique est divisé en artères carotides communes et sous-clavières droites.

Le système des artères humaines: caractéristiques structurelles et fonctions de base

Les caractéristiques de la structure des artères dans le corps humain et leurs fonctions sont les suivantes.

L'artère carotide commune (droite et gauche) monte à côté de la trachée et de l'œsophage, elle se divise en une artère carotide externe sortant de la cavité crânienne et une artère carotide interne qui pénètre dans le crâne et se dirige vers le cerveau. L'artère carotide externe fournit du sang aux parties externes et aux organes de la tête et du cou. L'artère carotide interne pénètre dans la cavité crânienne, où elle est divisée en un certain nombre de branches qui alimentent le cerveau et l'organe de la vision. Le système artériel humain comprend également l'artère sous-clavière et ses branches, qui fournissent à la moelle épinière cervicale ses membranes et le cerveau, une partie des muscles du cou, du dos et des épaules, le diaphragme, la glande mammaire, le larynx, la trachée, l'œsophage, la thyroïde et le thymus. L'artère sous-clavière dans la région axillaire passe dans l'artère axillaire, qui alimente le membre supérieur.

Parlant des fonctions et de la structure des artères, il convient de noter que la partie descendante de l’aorte est divisée en thorax et en abdomen. La partie thoracique de l'aorte est située de manière asymétrique sur la colonne vertébrale, à gauche de la ligne médiane, et fournit du sang aux organes internes situés dans la cavité thoracique et ses parois. De la cavité thoracique, l'aorte passe dans la cavité abdominale par l'orifice aortique du diaphragme. Au niveau de la vertèbre lombaire intraveineuse, l'aorte est divisée en deux artères iliaques communes. La principale fonction des artères de l'aorte abdominale est l'irrigation sanguine des viscères abdominaux et de la paroi abdominale.

A quoi ressemblent et fonctionnent les artères iliaques

L'artère iliaque commune est la plus grande artère humaine (à l'exception de l'aorte). Après avoir parcouru une certaine distance sous un angle aigu, chacune d’elles est divisée en deux artères: l’artère iliaque interne et l’artère iliaque externe.

L'artère iliaque interne nourrit le bassin, ses muscles et ses intérieurs situés dans le bassin.

L'artère iliaque externe alimente les muscles de la cuisse, le scrotum chez l'homme, le pubis chez la femme et les grandes lèvres. La principale fonction de l'artère fémorale, qui est la continuation directe de l'artère iliaque externe, est l'apport sanguin à la cuisse, aux muscles de la cuisse et aux organes génitaux externes. L'artère poplitée est une continuation du fémoral, elle fournit du sang à la jambe et au pied.

La photo montre à quoi ressemblent les artères iliaques - internes et externes:

Structure et fonctions principales des veines dans le système circulatoire

Vint maintenant le tour de parler des fonctions et de la structure des veines dans le corps humain. Les veines de la circulation systémique sont divisées en trois systèmes: le système de la veine cave supérieure; le système de la veine cave inférieure, y compris la veine porte portail; le système des veines du coeur, formant le sinus coronaire du coeur. Le tronc principal de chacune de ces veines s'ouvre par une ouverture indépendante dans la cavité de l'oreillette droite. Les veines du système des veines creuses supérieure et inférieure sont interconnectées. Les principales fonctions des veines - la collecte de sang: la veine cave supérieure recueille le sang de la moitié supérieure du corps, de la tête, du cou, du membre supérieur et de la cavité thoracique; La veine cave inférieure recueille le sang des membres inférieurs, des parois et des viscères du bassin et de l'abdomen.

La veine porte dans la circulation sanguine a pour fonction principale de recueillir le sang d'organes abdominaux non appariés: rate, pancréas, omentum, vésicule biliaire et autres organes du tube digestif. Contrairement à toutes les autres veines, la veine porte, ayant pénétré dans les portes du foie, se divise à nouveau en branches de plus en plus petites, jusqu'aux capillaires sinusoïdaux du foie, qui s’écoulent dans la veine centrale du lobule. Des veines hépatiques centrales s’écoulent dans la veine cave inférieure.

Dans le corps humain, tous les vaisseaux sanguins ont une longueur totale de 100 000 km. Cela suffit pour enrouler la Terre 2,2 fois. Le sang circule dans tout le corps, partant d'un côté du cœur et se terminant au bout d'un cercle complet pour revenir à l'autre. En un jour, le sang passe à 270 370 km. Si le système circulatoire d'une personne ordinaire est disposé en ligne droite, sa longueur sera alors supérieure à 95 000 km.

Système cardiovasculaire humain

La structure du système cardiovasculaire et ses fonctions constituent les connaissances essentielles dont un entraîneur personnel a besoin pour mettre en place un processus de formation compétent pour les services, basé sur des charges adaptées à leur niveau de préparation. Avant de commencer la construction de programmes de formation, il est nécessaire de comprendre le principe de fonctionnement de ce système, comment le sang est pompé à travers le corps, comment cela se passe et ce qui affecte le débit de ses vaisseaux.

Introduction

Le système cardiovasculaire est nécessaire pour que le corps puisse transférer les nutriments et les composants, ainsi que pour éliminer les produits métaboliques des tissus, maintenir la constance de l'environnement interne du corps et optimiser son fonctionnement. Le cœur est son composant principal, qui agit comme une pompe qui pompe le sang à travers le corps. En même temps, le cœur n’est qu’une partie de l’ensemble du système circulatoire du corps, qui dirige d’abord le sang du cœur vers les organes, puis de ceux-ci vers le cœur. Nous examinerons également séparément les systèmes artériel et veineux de la circulation sanguine humaine.

Structure et fonctions du coeur humain

Le cœur est une sorte de pompe composée de deux ventricules, interconnectés et en même temps indépendants l'un de l'autre. Le ventricule droit fait circuler le sang dans les poumons, le ventricule gauche dans le reste du corps. Chaque moitié du coeur a deux chambres: l'oreillette et le ventricule. Vous pouvez les voir dans l'image ci-dessous. Les oreillettes droite et gauche servent de réservoirs à partir desquels le sang entre directement dans les ventricules. Au moment de la contraction du cœur, les deux ventricules repoussent le sang et le font transiter par le système des vaisseaux pulmonaires et périphériques.

La structure du coeur humain: tronc 1-pulmonaire; Artère pulmonaire à 2 valves; Veine cave 3-supérieure; Artère pulmonaire 4 droite; Veine pulmonaire 5 droite; Oreillette 6-droite; Valve 7-tricuspide; 8ème ventricule droit; 9 veine cave inférieure; Aorte descendante 10; 11ème arcade aortique; Artère pulmonaire gauche 12; Veine pulmonaire gauche 13; Oreillette gauche 14; Valve 15 aortique; Valvule 16 mitrale; 17 ventricule gauche; Septum interventriculaire.

Structure et fonction du système circulatoire

La circulation sanguine de tout le corps, aussi bien central (cœur et poumons) que périphérique (reste du corps), forme un système complet et fermé, divisé en deux circuits. Le premier circuit entraîne le sang du cœur et est appelé système circulatoire artériel, le second circuit renvoie le sang au cœur et est appelé système circulatoire veineux. Le sang revenant de la périphérie vers le cœur atteint initialement l'oreillette droite par la veine cave supérieure et inférieure. De l'oreillette droite, le sang coule dans le ventricule droit et passe par l'artère pulmonaire jusqu'aux poumons. Après avoir échangé de l'oxygène dans les poumons avec du dioxyde de carbone, le sang retourne au cœur par les veines pulmonaires, tombant d'abord dans l'oreillette gauche, puis dans le ventricule gauche, puis uniquement dans le système de circulation sanguine artérielle.

La structure du système circulatoire humain: la veine cave 1-supérieure; 2-vaisseaux allant aux poumons; 3-aorte; La veine cave inférieure 4; Veine 5-hépatique; Veine porte 6; Veine 7-pulmonaire; La veine cave supérieure 8; 9 veine cave inférieure; 10 vaisseaux d'organes internes; 11 vaisseaux des membres; 12 vaisseaux de la tête; Artère 13-pulmonaire; 14ème coeur.

I-petite circulation; II-grand cercle de la circulation sanguine; III-vaisseaux allant à la tête et aux mains; Vaisseaux intraveineux allant aux organes internes; V-vaisseaux allant aux pieds

Structure et fonction du système artériel humain

Les artères ont pour fonction de transporter le sang, qui est libéré par le cœur lorsqu'il se contracte. Comme la libération de ce produit se produit sous une pression assez élevée, la nature a doté les artères de parois musculaires fortes et élastiques. Les artères plus petites, appelées artérioles, sont conçues pour contrôler la circulation du sang et servent de vaisseaux par lesquels le sang entre directement dans les tissus. Les artérioles jouent un rôle clé dans la régulation du flux sanguin dans les capillaires. Ils sont également protégés par des parois musculaires élastiques, qui permettent aux vaisseaux de recouvrir leur lumière au besoin ou de l’étendre considérablement. Cela permet de modifier et de contrôler la circulation sanguine à l'intérieur du système capillaire, en fonction des besoins de tissus spécifiques.

La structure du système artériel humain: tronc 1-brachio-céphalique; Artère 2 sous-clavière; Arcade 3-aortique; 4 artère axillaire; 5 artère thoracique interne; Aorte descendante 6; 7 artère thoracique interne; 8 artère brachiale profonde; Artère de retour à 9 faisceaux; 10 artère épigastrique supérieure; 11 aorte descendante; Artère épigastrique 12-inférieure; Artères 13-interosseuses; Artère à 14 faisceaux; 15 artère cubitale; 16 arc palmaire; Arcade carpienne 17-arrière; 18 arcs palmaires; Artères à 19 doigts; Branche 20 descendante de l'enveloppe de l'artère; Artère du genou 21 décroissante; Artères du genou 22 supérieures; 23 artères inférieures du genou; 24 artère péronière; 25 artère tibiale postérieure; 26 grandes artères tibiales; 27 artère péronière; Voûte plantaire de 28 artères; Artère 29 métatarsienne; 30 artère cérébrale antérieure; 31 artère cérébrale moyenne; 32 artère cérébrale postérieure; 33 artères basilaires; Artère carotide externe 34; Artère carotide interne 35; 36 artères vertébrales; 37 artères carotides communes; 38 veine pulmonaire; 39-coeur; 40 artères intercostales; 41 tronc coeliaque; 42 artères gastriques; Artère 43-splénique; 44 artère hépatique commune; Artère mésentérique supérieure 45; Artère rénale 46; Artère mésentérique inférieure 47; 48 artère interne de la graine; 49 artère iliaque commune; 50ème artère iliaque interne; Artère iliaque externe 51; 52 artères de l'enveloppe; Artère fémorale commune 53; 54 branches perforantes; 55ème artère fémorale profonde; Artère fémorale superficielle 56; Artère poplitée 57; Artères métatarsiennes à 58 dorsales; Artères des doigts 59 dorsales.

Structure et fonction du système veineux humain

Le but des veinules et des veines est de renvoyer le sang au cœur à travers elles. Des minuscules capillaires, le sang pénètre dans les petites veinules et de là dans les plus grandes veines. Puisque la pression dans le système veineux est beaucoup plus basse que dans le système artériel, les parois des vaisseaux sont beaucoup plus minces ici. Cependant, les parois des veines sont également entourées de tissus musculaires élastiques, ce qui leur permet, par analogie avec les artères, de réduire fortement le blocage de la lumière ou de s’étendre considérablement, agissant dans ce cas comme un réservoir de sang. Une caractéristique de certaines veines, par exemple aux extrémités inférieures, est la présence de valves à sens unique, dont la tâche est d’assurer le retour normal du sang dans le cœur, empêchant ainsi son écoulement sous l’effet de la gravité lorsque le corps est en position verticale.

La structure du système veineux humain: veine 1-sous-clavière; Veine thoracique 2-interne; Veine 3-axillaire; Veine 4-latérale du bras; Les veines 5-brachiales; Veines 6-intercostales; 7ème veine médiale du bras; 8 veine cubitale médiane; Veine 9-sternum; Veine 10-latérale du bras; 11 veine cubitale; Veine médiale 12 de l'avant-bras; 13 veine ventriculaire inférieure; 14 arcade palaire profonde; Arcade palmaire de 15 surfaces; 16 veines palmaires des doigts; 17 sinus sigmoïde; Veine jugulaire externe 18; 19 veine jugulaire interne; 20ème veine thyroïdienne inférieure; 21 artères pulmonaires; 22-coeur; 23 veine cave inférieure; 24 veines hépatiques; 25 veines rénales; La veine cave 26-ventrale; Veine séminale 27; 28 veines iliaques communes; 29 branches perforantes; Veine iliaque externe 30; 31 veine iliaque interne; Veine génitale externe 32; Veine de cuisse de 33 profondeurs; Veine de la jambe 34-large; 35ème veine fémorale; Veine de jambe de plus de 36 ans; 37 veines du genou supérieures; 38 veine poplitée; 39 veines inférieures du genou; Veine de la jambe de 40 grosses; Veine de 41 jambes; Veine tibiale postérieure / antérieure à 42; 43 veines plantaires profondes; Arc veineux à 44 dos; Veines métacarpiennes 45-dorsales.

Structure et fonction du système de petits capillaires

Les fonctions des capillaires sont de réaliser l'échange d'oxygène, de fluides, de divers nutriments, d'électrolytes, d'hormones et d'autres composants vitaux entre le sang et les tissus corporels. L'apport d'éléments nutritifs aux tissus est dû au fait que les parois de ces vaisseaux ont une très faible épaisseur. Les parois minces permettent aux nutriments de pénétrer dans les tissus et leur fournissent tous les composants nécessaires.

La structure des vaisseaux de la microcirculation: 1-artère; 2 artérioles; 3-veines; 4-veinules; 5 capillaires; Tissu à 6 cellules

Le travail du système circulatoire

Le mouvement du sang dans tout le corps dépend de la capacité des vaisseaux, plus précisément de leur résistance. Plus cette résistance est faible, plus le débit sanguin augmente et plus la résistance est élevée, plus le débit sanguin devient faible. En soi, la résistance dépend de la taille de la lumière des vaisseaux sanguins du système circulatoire artériel. La résistance totale de tous les vaisseaux du système circulatoire est appelée résistance totale. Si, dans le corps, la lumière des vaisseaux est réduite dans un court laps de temps, la résistance périphérique totale augmente et, avec l'expansion de la lumière des vaisseaux, elle diminue.

L’expansion et la contraction des vaisseaux de l’ensemble du système circulatoire se produisent sous l’influence de nombreux facteurs, tels que l’intensité de la formation, le niveau de stimulation du système nerveux, l’activité des processus métaboliques dans des groupes musculaires spécifiques, le déroulement des processus d’échange de chaleur avec l’environnement extérieur et pas seulement. En cours d’entraînement, la stimulation du système nerveux entraîne la dilatation des vaisseaux sanguins et une augmentation du débit sanguin. Dans le même temps, l'augmentation la plus significative de la circulation sanguine dans les muscles résulte principalement du flux de réactions métaboliques et électrolytiques dans les tissus musculaires sous l'influence d'exercices aérobiques et anaérobies. Cela inclut une augmentation de la température corporelle et une augmentation de la concentration en dioxyde de carbone. Tous ces facteurs contribuent à l'expansion des vaisseaux sanguins.

Dans le même temps, le flux sanguin dans d'autres organes et parties du corps qui ne sont pas impliqués dans l'exercice de l'activité physique diminue à la suite de la contraction des artérioles. Ce facteur, associé au rétrécissement des gros vaisseaux du système circulatoire veineux, contribue à une augmentation du volume sanguin, ce qui est impliqué dans la circulation sanguine des muscles impliqués dans le travail. Le même effet est observé lors de l'exécution de charges de puissance avec des poids faibles, mais avec un grand nombre de répétitions. La réaction du corps dans ce cas peut être assimilée à un exercice aérobie. Dans le même temps, lorsque vous effectuez des exercices de musculation avec des poids importants, la résistance à la circulation sanguine dans les muscles en action augmente.

Conclusion

Nous avons examiné la structure et la fonction du système circulatoire humain. Comme cela est maintenant devenu clair pour nous, il est nécessaire de pomper le sang à travers le corps à travers le cœur. Le système artériel entraîne le sang du cœur, le système veineux lui renvoie le sang. En termes d'activité physique, vous pouvez résumer comme suit. Le débit sanguin dans le système circulatoire dépend du degré de résistance des vaisseaux sanguins. Lorsque la résistance des vaisseaux diminue, le flux sanguin augmente et diminue avec la résistance. La réduction ou l'expansion des vaisseaux sanguins, qui déterminent le degré de résistance, dépend de facteurs tels que le type d'exercice, la réaction du système nerveux et l'évolution des processus métaboliques.

Système cardiovasculaire: les secrets du secret "moteur" humain

Le corps humain est un système biologique complexe et ordonné, qui constitue la première étape de l'évolution du monde organique parmi les habitants de l'Univers auquel nous avons accès. Tous les organes internes de ce système fonctionnent correctement et assurent le maintien des fonctions vitales et la constance de l’environnement interne.

Et comment fonctionne le système cardiovasculaire, quelles sont les fonctions importantes de celui-ci dans le corps humain et quels sont ses secrets? Vous pouvez faire plus ample connaissance avec elle dans notre article détaillé sur la vidéo et cet article.

Un peu d'anatomie: ce qui se passe dans le système cardiovasculaire

Le système cardiovasculaire (SSS), ou système circulatoire - est un élément multifonctionnel complexe du corps humain, composé du cœur et des vaisseaux sanguins (artères, veines, capillaires).

C'est intéressant. Un réseau vasculaire commun imprègne chaque millimètre carré du corps humain, fournissant nourriture et oxygénation de toutes les cellules. La longueur totale des artères, artérioles, veines et capillaires du corps est supérieure à cent mille kilomètres.

La structure de tous les éléments du CCC est différente et dépend des fonctions exercées. L'anatomie du système cardiovasculaire est discutée plus en détail dans les sections ci-dessous.

Le coeur

Le cœur (Greek cardia, lat. Cor.) Est un organe musculaire creux qui pompe le sang dans les vaisseaux à travers une certaine séquence de contractions et de relaxations rythmiques. Son activité est causée par des impulsions nerveuses constantes provenant de la médulla.

De plus, le corps a un automatisme - la capacité de se contracter sous l'action des impulsions qui s'y forment. L'excitation générée dans le nœud sinusal est distribuée au tissu myocardique, provoquant des contractions musculaires spontanées.

Faites attention! Le volume des cavités organiques chez une personne adulte est en moyenne de 0,5 à 0,7 l et sa masse ne dépasse pas 0,4% du poids total du corps.

Les murs du coeur se composent de trois feuilles:

  • l'endocarde tapissant le coeur de l'intérieur et formant l'appareil à valve CCC;
  • myocarde - la couche musculaire, assurant la contraction des cavités cardiaques;
  • epicard - gaine extérieure, reliant le péricarde - sac péricardique.

Dans la structure anatomique du corps, on distingue 4 chambres isolées - 2 ventricules et 2 oreillettes, reliées entre elles par un système de valves.

Dans l’oreillette gauche, dans quatre veines pulmonaires de diamètre égal, le sang est saturé de molécules d’oxygène de la circulation pulmonaire. En diastole (phase de relaxation) à travers la valve mitrale ouverte, il pénètre dans le ventricule gauche. Ensuite, lors de la systole, le sang est libéré de force dans l'aorte, le plus grand tronc artériel du corps humain.

L'oreillette droite recueille le sang "recyclé" contenant le minimum d'oxygène et le maximum de dioxyde de carbone. Il vient du haut et du bas du corps par les mêmes veines creuses - v. cava supérieur et v. intérieur de cava.

Ensuite, le sang passe à travers la valve tricuspide et pénètre dans la cavité du ventricule droit, d'où il est transporté à travers le tronc pulmonaire vers le réseau artériel pulmonaire pour enrichir l'O2 et éliminer le CO2 en excès. Ainsi, les parties gauches du cœur sont remplies de sang artériel oxygéné et les parties droites - veineuses.

Faites attention! Les rudiments du muscle cardiaque sont déterminés même dans les accords les plus simples sous la forme de l'expansion des grands vaisseaux. Au cours de l'évolution, l'orgue a développé et acquis une structure de plus en plus parfaite. Par exemple, le coeur d'un poisson est constitué de deux chambres, chez les amphibiens et les reptiles - une chambre à trois chambres, et chez les oiseaux et tous les mammifères, comme chez l'homme - de quatre chambres.

La contraction du muscle cardiaque rythmiquement et normalement est de 60 à 80 battements par minute. Dans le même temps, il existe une certaine dépendance temporelle:

  • la durée de la contraction du muscle auriculaire est de 0,1 s;
  • les ventricules se serrent pendant 0,3 s;
  • durée de la pause - 0.4 s.

L'auscultation dans le travail du coeur distingue deux tons. Leurs principales caractéristiques sont présentées dans le tableau ci-dessous.

Système cardiovasculaire du corps humain: caractéristiques structurelles et fonctions

Le système cardiovasculaire d’une personne est si complexe qu’une simple description schématique des caractéristiques fonctionnelles de toutes ses composantes fait l’objet de plusieurs traités scientifiques. Ce matériel offre une information concise sur la structure et les fonctions du cœur humain, ce qui permet de se faire une idée générale de la nécessité de ce corps.

Physiologie et anatomie du système cardiovasculaire humain

Sur le plan anatomique, le système cardiovasculaire humain comprend le cœur, les artères, les capillaires et les veines et remplit trois fonctions principales:

  • transport des nutriments, des gaz, des hormones et des produits métaboliques vers et à partir des cellules;
  • régulation de la température corporelle;
  • protection contre les micro-organismes envahisseurs et les cellules exotiques.

Ces fonctions du système cardiovasculaire humain sont directement assurées par les fluides circulant dans le système - le sang et la lymphe. (La lymphe est un liquide aqueux limpide contenant des globules blancs et situé dans les vaisseaux lymphatiques.)

La physiologie du système cardiovasculaire humain est formée de deux structures apparentées:

  • La première structure du système cardiovasculaire humain comprend: le cœur, les artères, les capillaires et les veines, qui assurent une circulation de sang fermée.
  • La deuxième structure du système cardiovasculaire comprend: un réseau de capillaires et de conduits s’écoulant dans le système veineux.

La structure, le travail et la fonction du coeur humain

Le cœur est un organe musculaire qui injecte le sang par un système de cavités et de valves dans un réseau de distribution appelé système circulatoire.

Poster une histoire sur la structure et le travail du cœur doit correspondre à la définition de son emplacement. Chez l'homme, le cœur est situé près du centre de la cavité thoracique. Il se compose principalement de tissus élastiques durables - le muscle cardiaque (myocarde) - qui diminue de façon rythmique tout au long de la vie, en envoyant du sang dans les artères et les capillaires jusqu'aux tissus du corps. En ce qui concerne la structure et les fonctions du système cardiovasculaire humain, il convient de noter que le principal indicateur du travail du cœur est la quantité de sang à pomper en une minute. À chaque contraction, le cœur jette environ 60 à 75 ml de sang et en une minute (avec une fréquence moyenne de contractions de 70 par minute), de 4 à 5 litres, soit 300 litres par heure, 7 200 litres par jour.

Outre le fait que le travail du cœur et de la circulation sanguine favorise un flux sanguin régulier et normal, cet organe s'adapte rapidement et s'adapte aux besoins en constante évolution du corps. Par exemple, dans un état d'activité, le cœur pompe plus de sang et moins - dans un état de repos. Quand un adulte est au repos, le cœur bat de 60 à 80 battements par minute.

Pendant l'exercice, au moment du stress ou de l'excitation, le rythme et la fréquence cardiaque peuvent augmenter jusqu'à 200 battements par minute. Sans système d'organes circulatoires humains, le fonctionnement de l'organisme est impossible et le cœur, en tant que «moteur», est un organe vital.

Lorsque vous arrêtez ou affaiblissez brusquement le rythme des contractions cardiaques, la mort survient en quelques minutes.

Système cardiovasculaire des organes circulatoires humains: en quoi consiste le cœur

Alors, en quoi consiste le cœur d'une personne et qu'est-ce qu'un battement de coeur?

La structure du cœur humain comprend plusieurs structures: murs, cloisons, valves, système conducteur et système d'approvisionnement en sang. Il est divisé par des cloisons en quatre chambres remplies de sang en même temps. Les deux cavités inférieures à paroi épaisse situées dans la structure du système cardiovasculaire d'une personne, les ventricules, jouent le rôle d'une pompe à injection. Ils reçoivent le sang des chambres hautes et, réduit, l'envoient aux artères. Les contractions des oreillettes et des ventricules créent ce qu'on appelle les battements de coeur.

Contraction des oreillettes gauche et droite

Les deux chambres hautes sont les oreillettes. Ce sont des réservoirs à parois minces, qui sont facilement étirés, permettant au sang de s'écouler des veines dans les intervalles entre les contractions. Les murs et les cloisons forment la base musculaire des quatre cavités du cœur. Les muscles des cavités sont situés de telle manière que, lorsqu'ils se contractent, le sang est littéralement éjecté du cœur. Le sang veineux qui coule pénètre dans l'oreillette droite du cœur, passe par la valve tricuspide dans le ventricule droit, d'où il pénètre dans l'artère pulmonaire en passant par ses valves semi-lunaires, puis dans les poumons. Ainsi, le côté droit du cœur reçoit le sang du corps et le pompe dans les poumons.

Le sang dans le système cardiovasculaire du corps humain, revenant des poumons, pénètre dans l'oreillette gauche du cœur, passe à travers la valvule bicuspide ou mitrale et pénètre dans le ventricule gauche, à partir duquel les valvules aortiques semi-lunaires sont poussées dans sa paroi. Ainsi, le côté gauche du cœur reçoit le sang des poumons et le pompe dans le corps.

Le système cardiovasculaire humain comprend des valves du cœur et du tronc pulmonaire

Les valves sont des replis du tissu conjonctif qui permettent au sang de circuler dans une seule direction. Quatre valves cardiaques (tricuspide, pulmonaire, bicuspide ou mitrale et aortique) jouent le rôle de «porte» entre les cavités, s'ouvrant dans une direction. Le travail des valves cardiaques contribue à l'avancement du sang et empêche son mouvement dans la direction opposée. La valve tricuspide est située entre l'oreillette droite et le ventricule droit. Le nom même de cette valve dans l'anatomie du système cardiovasculaire humain parle de sa structure. Lorsque cette valve cardiaque humaine s'ouvre, le sang passe de l'oreillette droite au ventricule droit. Il empêche le reflux de sang dans l'oreillette et se ferme lors de la contraction ventriculaire. Lorsque la valve tricuspide est fermée, le sang dans le ventricule droit n'a accès qu'au tronc pulmonaire.

Le tronc pulmonaire est divisé en artères pulmonaires gauche et droite, qui vont respectivement aux poumons gauche et droit. L'entrée du tronc pulmonaire ferme la valve pulmonaire. Cet organe du système cardiovasculaire humain comprend trois valves qui sont ouvertes lorsque le ventricule droit du cœur est réduit et fermé au moment de sa relaxation. Les caractéristiques anatomiques et physiologiques du système cardiovasculaire humain sont telles que la valve pulmonaire permet au sang de circuler du ventricule droit dans les artères pulmonaires, tout en empêchant le reflux sanguin des artères pulmonaires dans le ventricule droit.

Le fonctionnement de la valvule cardiaque bicuspide tout en réduisant l'oreillette et les ventricules

La valve bicuspide ou mitrale régule le flux sanguin de l'oreillette gauche au ventricule gauche. Comme la valve tricuspide, il se ferme au moment de la contraction du ventricule gauche. La valve aortique se compose de trois feuilles et ferme l'entrée de l'aorte. Cette valve transmet le sang du ventricule gauche au moment de sa contraction et empêche le reflux de sang de l'aorte vers le ventricule gauche au moment de la relaxation de ce dernier. Les pétales de valve sains sont un tissu fin et flexible de forme parfaite. Ils s'ouvrent et se ferment lorsque le cœur se contracte ou se détend.

En cas de défaut (défaut) des valves entraînant une fermeture incomplète, un écoulement inverse d'une certaine quantité de sang se produit à travers la valve endommagée à chaque contraction musculaire. Ces défauts peuvent être congénitaux ou acquis. Les plus sensibles aux valves mitrales.

Les parties gauche et droite du cœur (comprenant l'oreillette et le ventricule) sont isolées l'une de l'autre. La section droite reçoit le sang pauvre en oxygène qui coule des tissus du corps et l'envoie aux poumons. La section gauche reçoit le sang oxygéné des poumons et le dirige vers les tissus de tout le corps.

Le ventricule gauche est beaucoup plus épais et plus massif que les autres cavités cardiaques, car il effectue le travail le plus dur - le sang est pompé dans la grande circulation: ses parois mesurent en général un peu moins de 1,5 cm.

Le cœur est entouré d'un sac péricardique (péricarde) contenant du liquide péricardique. Ce sac permet au cœur de se contracter et de s’étendre librement. Le péricarde est fort, il est constitué de tissu conjonctif et présente une structure en deux couches. Le liquide péricardique est contenu entre les couches du péricarde et, en tant que lubrifiant, leur permet de glisser librement les unes sur les autres lorsque le cœur se dilate et se contracte.

Cycle cardiaque: phase, rythme et fréquence

Le cœur a une séquence de contraction (systole) et de relaxation (diastole) strictement définie, appelée cycle cardiaque. Puisque la durée de la systole et de la diastole est la même, le cœur est dans un état de détente pendant la moitié du temps de cycle.

L'activité cardiaque est régie par trois facteurs:

  • le cœur est inhérent à la capacité de contractions rythmiques spontanées (le soi-disant automatisme);
  • la fréquence cardiaque est déterminée principalement par le système nerveux autonome innervant le cœur;
  • La contraction harmonieuse des oreillettes et des ventricules est coordonnée par un système conducteur constitué de nombreuses fibres nerveuses et musculaires et situé dans les parois du cœur.

L’accomplissement par le cœur des fonctions de «collecte» et de pompage du sang dépend du rythme de mouvement des impulsions minuscules venant de la chambre haute du cœur vers la chambre basse. Ces impulsions se propagent dans le système de conduction cardiaque, qui définit la fréquence, l'uniformité et le synchronisme requis des contractions auriculaires et ventriculaires en fonction des besoins du corps.

La séquence de contractions des cavités cardiaques s'appelle le cycle cardiaque. Au cours du cycle, chacune des quatre chambres subit une phase du cycle cardiaque telle que la phase de contraction (systole) et de relaxation (diastole).

Le premier est la contraction des atriums: premier à droite, presque immédiatement derrière lui à gauche. Ces coupures permettent de remplir rapidement le sang des ventricules détendus. Ensuite, les ventricules se contractent, repoussant le sang qu’ils contiennent. À ce moment, les oreillettes se détendent et se remplissent de sang des veines.

L'une des caractéristiques les plus caractéristiques du système cardiovasculaire humain est la capacité du cœur à effectuer des contractions spontanées régulières ne nécessitant pas de mécanisme de déclenchement externe, tel qu'une stimulation nerveuse.

Le muscle cardiaque est entraîné par des impulsions électriques provenant du cœur même. Leur source est un petit groupe de cellules musculaires spécifiques dans la paroi de l'oreillette droite. Ils forment une structure superficielle d'environ 15 mm de long, appelée nœud sino-auriculaire. Il ne déclenche pas seulement les battements cardiaques, mais détermine également leur fréquence initiale, qui reste constante en l'absence d'influences chimiques ou nerveuses. Cette formation anatomique contrôle et régule le rythme cardiaque en fonction de l'activité de l'organisme, de l'heure de la journée et de nombreux autres facteurs affectant la personne. À l'état naturel du rythme cardiaque, des impulsions électriques surviennent qui traversent les oreillettes, les faisant se contracter, vers le noeud auriculo-ventriculaire situé à la frontière entre les oreillettes et les ventricules.

Ensuite, l'excitation à travers les tissus conducteurs se propage dans les ventricules, les faisant se contracter. Après cela, le cœur se repose jusqu'à l'impulsion suivante, à partir de laquelle commence le nouveau cycle. Les impulsions provenant du stimulateur se propagent de manière ondulée le long des parois musculaires des deux oreillettes, les faisant se contracter presque simultanément. Ces impulsions ne peuvent se propager que par les muscles. Par conséquent, dans la partie centrale du cœur, entre les oreillettes et les ventricules, se trouve un faisceau musculaire appelé système de conduction auriculo-ventriculaire. Sa partie initiale, qui reçoit une impulsion, s'appelle un nœud AV. Selon lui, l'impulsion se propage très lentement, de sorte qu'il faut environ 0,2 seconde entre l'apparition de l'impulsion dans le nœud sinusal et sa propagation dans les ventricules. C’est ce délai qui permet au sang de circuler des oreillettes vers les ventricules, ces derniers demeurant toutefois détendus. À partir du noeud AV, l'impulsion se propage rapidement le long des fibres conductrices formant le faisceau de His.

La justesse du coeur, son rythme peut être vérifié en posant une main sur le coeur ou en mesurant le pouls.

Performance cardiaque: fréquence cardiaque et force

Régulation de la fréquence cardiaque. Le cœur d'un adulte se contracte généralement entre 60 et 90 fois par minute. Chez les enfants, la fréquence et la force des contractions cardiaques sont plus élevées: chez le nourrisson, environ 120, et chez les enfants de moins de 12 ans, à 100 battements par minute. Ce ne sont que des indicateurs moyens du travail du cœur. Selon les conditions (stress physique ou émotionnel, etc.), le cycle des battements de cœur peut changer très rapidement.

Le cœur est abondamment alimenté en nerfs régulant la fréquence de ses contractions. La régulation des battements cardiaques avec des émotions fortes, telles que l'excitation ou la peur, est améliorée, à mesure que le flux d'impulsions du cerveau vers le cœur augmente.

Un rôle important dans les jeux cardiaques et les changements physiologiques.

Ainsi, une augmentation de la concentration de dioxyde de carbone dans le sang, associée à une diminution de la teneur en oxygène, provoque une puissante stimulation du cœur.

Un débordement de sang (fort étirement) de certaines parties du lit vasculaire a l'effet inverse, ce qui ralentit le rythme cardiaque. L'activité physique augmente également la fréquence cardiaque jusqu'à 200 par minute ou plus. Un certain nombre de facteurs affectent directement le travail du cœur, sans la participation du système nerveux. Par exemple, une augmentation de la température corporelle accélère la fréquence cardiaque et une diminution la ralentit.

Certaines hormones, telles que l'adrénaline et la thyroxine, ont également un effet direct et, lorsqu'elles pénètrent dans le cœur avec du sang, augmentent le rythme cardiaque. La régulation de la force et de la fréquence cardiaque est un processus très complexe dans lequel de nombreux facteurs interagissent. Certains affectent directement le cœur, d'autres agissent indirectement par le biais de divers niveaux du système nerveux central. Le cerveau coordonne ces effets sur le travail du cœur avec l'état fonctionnel du reste du système.

Le travail du coeur et des cercles de la circulation sanguine

Le système circulatoire humain, en plus du cœur, comprend une variété de vaisseaux sanguins:

  • Les vaisseaux sont un système de tubes élastiques creux de différentes structures, diamètres et propriétés mécaniques remplis de sang. En fonction de la direction du mouvement du sang, les vaisseaux sont divisés en artères, par lesquelles le sang est drainé du cœur et atteint les organes, et les veines sont des vaisseaux dans lesquels le sang circule vers le cœur.
  • Entre les artères et les veines se trouve un lit microcirculatoire qui forme la partie périphérique du système cardiovasculaire. Le lit de microcirculation est un système de petits vaisseaux, comprenant des artérioles, des capillaires, des veinules.
  • Les artérioles et les veinules sont respectivement de petites branches d’artères et de veines. En s'approchant du cœur, les veines fusionnent à nouveau pour former de plus gros vaisseaux. Les artères ont un grand diamètre et des parois élastiques épaisses pouvant supporter une pression artérielle très élevée. Contrairement aux artères, les veines ont des parois plus minces contenant moins de muscle et de tissu élastique.
  • Les capillaires sont les plus petits vaisseaux sanguins qui relient les artérioles aux veinules. En raison de la paroi très mince des capillaires, des éléments nutritifs et d'autres substances (telles que l'oxygène et le dioxyde de carbone) sont échangés entre le sang et les cellules de divers tissus. En fonction des besoins en oxygène et autres nutriments, les tissus diffèrent en nombre de capillaires.

Les tissus tels que les muscles consomment de grandes quantités d'oxygène et possèdent donc un réseau dense de capillaires. En revanche, les tissus à métabolisme lent (tels que l'épiderme et la cornée) ne contiennent pas de capillaires. L'homme et tous les vertébrés ont un système circulatoire fermé.

Le système cardiovasculaire d'une personne forme deux cercles de circulation sanguine reliés en série: grand et petit.

Un grand cercle de circulation sanguine fournit du sang à tous les organes et tissus. Il commence dans le ventricule gauche, d'où provient l'aorte, et se termine dans l'oreillette droite, dans laquelle s'écoulent les veines creuses.

La circulation pulmonaire est limitée par la circulation sanguine dans les poumons, le sang est enrichi en oxygène et le dioxyde de carbone est éliminé. Il commence par le ventricule droit d'où émerge le tronc pulmonaire et se termine par l'oreillette gauche dans laquelle tombent les veines pulmonaires.

Corps du système cardiovasculaire de la personne et apport sanguin du cœur

Le cœur a aussi sa propre réserve de sang: des branches aortiques spéciales (artères coronaires) lui fournissent du sang oxygéné.

Bien qu'une énorme quantité de sang traverse les cavités du cœur, le cœur lui-même n'en extrait rien pour sa propre nutrition. Les artères coronaires, un système spécial de vaisseaux, par lesquelles le muscle cardiaque reçoit directement environ 10% de tout le sang qu'il pompe, répondent aux besoins du cœur et de la circulation sanguine.

La condition des artères coronaires est d’une importance primordiale pour le fonctionnement normal du cœur et son apport en sang: elles développent souvent un processus de rétrécissement progressif (sténose) qui, en cas de surcharge, provoque une douleur thoracique et conduit à une crise cardiaque.

Les deux premières branches de l'aorte, situées à environ 1 cm au-dessus de la valve aortique, sont constituées de deux artères coronaires d'un diamètre de 0,3 à 0,6 cm.

L’artère coronaire gauche se divise presque immédiatement en deux grandes branches, dont l’une (branche antérieure descendante) passe le long de la surface antérieure du cœur jusqu’à son sommet.

La deuxième branche (enveloppe) est située dans la gorge entre l'oreillette gauche et le ventricule gauche. Avec l'artère coronaire droite située dans le sillon entre l'oreillette droite et le ventricule droit, elle plie autour du cœur comme une couronne. D'où le nom - "coronaire".

À partir des gros vaisseaux coronaires du système cardiovasculaire humain, les plus petites branches divergent et pénètrent dans l’épaisseur du muscle cardiaque, lui fournissant des nutriments et de l’oxygène.

Avec l'augmentation de la pression dans les artères coronaires et l'augmentation du travail du cœur, le flux sanguin dans les artères coronaires augmente. Le manque d'oxygène entraîne également une forte augmentation du débit sanguin coronaire.

La tension artérielle est maintenue par les contractions rythmiques du cœur, qui joue le rôle d'une pompe qui pompe le sang dans les vaisseaux de la grande circulation. Les parois de certains vaisseaux (les vaisseaux dits résistifs - artérioles et précapillaires) sont pourvus de structures musculaires qui peuvent se contracter et, par conséquent, rétrécir la lumière du vaisseau. Cela crée une résistance à la circulation sanguine dans les tissus et s'accumule dans la circulation sanguine en général, augmentant la pression systémique.

Le rôle du cœur dans la formation de la pression artérielle est donc déterminé par la quantité de sang qu'il jette dans la circulation sanguine par unité de temps. Ce nombre est défini par le terme "débit cardiaque" ou "volume minute du cœur". Le rôle des vaisseaux résistifs est défini comme la résistance périphérique totale, qui dépend principalement du rayon de la lumière des vaisseaux (à savoir des artérioles), c'est-à-dire du degré de leur rétrécissement, ainsi que de la longueur des vaisseaux et de la viscosité du sang.

À mesure que la quantité de sang émise par le cœur dans la circulation sanguine augmente, la pression augmente. Afin de maintenir un niveau adéquat de pression artérielle, les muscles lisses des vaisseaux résistifs se relâchent, leur lumière augmente (c'est-à-dire que leur résistance périphérique totale diminue), le sang circule vers les tissus périphériques et la pression artérielle systémique diminue. Inversement, avec une augmentation de la résistance périphérique totale, un volume minute diminue.